Updating search results...

Search Resources

1606 Results

View
Selected filters:
  • education
Where Are the Plastics Near Me? (Field Trip)
Read the Fine Print
Educational Use
Rating
0.0 stars

Through an adult-led field trip, students organized into investigation teams catalogue the incidence of plastic debris in different environments. They investigate these plastics according to their type, age, location and other characteristics that might indicate what potential they have for becoming part of the Great Pacific Garbage Patch (GPGP). Students collect qualitative and quantitative data that may be used to create a Google Earth layer as part of a separate activity that can be completed at a computer lab at school or as homework. The activity is designed as a step on the way to student's creation of their own GIS Google Earth layer. It is, however, possible for the field trip to be a useful learning experience unto itself that does not require this last GIS step.

Subject:
Environmental Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrey Koptelov
Nathan Howell
Date Added:
10/14/2015
Where Does All the Water Go?
Read the Fine Print
Educational Use
Rating
0.0 stars

The best way for students to understand how groundwater flows is to actually see it. In this activity, students will learn the vocabulary associated with groundwater and see a demonstration of groundwater flow. Students will learn about the measurements that environmental engineers need when creating a groundwater model of a chemical plume.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Where Is Your Teacher?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how to take bearings using orienteering compasses. They also learn how to describe a bearing and find an object in the classroom using a bearing.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Matt Lippis
Penny Axelrad
Date Added:
10/14/2015
Which Function?
Unrestricted Use
CC BY
Rating
0.0 stars

This task addresses knowledge related to interpreting forms of functions derived by factoring or completing the square. It requires students to pay special attention to the information provided by the way the equation is represented as well as the sign of the leading coefficient, which is not written out explicitly, and then to connect this information to the important features of the graph.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Which Number is Greater? Which Number is Less? How Do You Know?
Unrestricted Use
CC BY
Rating
0.0 stars

The purpose of this task is for students to explain how they know one quantity is greater or less than another quantity. Students will easily be able to identify which number is greater or less. However, explaining their reasoning will help them solidify their number sense skills.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
10/28/2012
Who Robbed the Bank?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use DNA profiling to determine who robbed a bank. After they learn how the FBI's Combined DNA Index System (CODIS) is used to match crime scene DNA with tissue sample DNA, students use CODIS principles and sample DNA fragments to determine which of three suspects matches evidence obtain at a crime location. They communicate their results as if they were biomedical engineers reporting to a police crime scene investigation.

Subject:
Biology
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Frank Burkholder
Malinda Schaefer Zarske
Date Added:
10/14/2015
Why Does ASA Work?
Unrestricted Use
CC BY
Rating
0.0 stars

The two triangles in this problem share a side so that only one rigid transformation is required to exhibit the congruence between them. In general more transformations are required and the "Why does SSS work?'' and "Why does SAS work?'' problems show how this works.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Why Does SAS Work?
Unrestricted Use
CC BY
Rating
0.0 stars

For these particular triangles, three reflections were necessary to express how to move from ABC to DEF. Sometimes, however, one reflection or two reflections will suffice. Since any rigid motion will take triangle ABC to a congruent triangle DEF, this shows the remarkable fact that any rigid motion of the plane can be expressed as one reflection, a composition of two reflections, or a composition of three reflections.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Why Does SSS Work?
Unrestricted Use
CC BY
Rating
0.0 stars

This particular sequence of transformations which exhibits a congruency between triangles ABC and DEF used one translation, one rotation, and one reflection. There are many other ways in which to exhibit the congruency and students and teachers are encouraged to explore the different possibilities.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Why Randomize?
Unrestricted Use
CC BY
Rating
0.0 stars

This exercise demonstrates that judgment (non-random) samples tend to be biased in the sense that they produce samples that are not balanced with respect to the population characteristics of interest.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Will It Conduct?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build their own simple conductivity tester and explore whether given solid materials and solutions of liquids are good conductors of electricity.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Daria Kotys-Schwartz
Denise Carlson
Joe Friedrichsen
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora Thompson
Date Added:
10/14/2015
Wind Energy
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about wind energy by making a pinwheel to model a wind turbine. Just like engineers, they decide where and how their turbine works best by testing it in different areas of the playground.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Melissa Straten
Date Added:
10/14/2015
Wind Power
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students develop an understanding of how engineers use wind to generate electricity. They will build a model anemometer to better understand and measure wind speed.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amy Kolenbrander
Janet Yowell
Jessica Todd
Malinda Schaefer Zarske
Date Added:
10/14/2015
Wind Power! Designing a Wind Turbine
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers transform wind energy into electrical energy by building their own miniature wind turbines and measuring the electrical current it produces. They explore how design and position affect the electrical energy production.

Subject:
Electrical & Electronics
Practical & Applied Arts
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Natalie Mach
Sabre Duren
Xochitl Zamora-Thompson
Date Added:
09/18/2014
Windmill of Your Mind: Distributed Energy Goes to School
Read the Fine Print
Educational Use
Rating
0.0 stars

Students research the feasibility of installing a wind-turbine distributed energy (DE) system for their school. They write a proposal (actually, the executive summary of a proposal) to the school principal based on their findings and recommendations. While this activity is geared towards fifth-grade and older students, and Internet research capabilities are required, some portions of this activity may be appropriate for younger students.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jane Evenson
Malinda Schaefer Zarske
Date Added:
10/14/2015