5.3 - Simple Gas Laws II - Charles' Law - Worksheet

1) The temperature inside my refrigerator is about 4^{0} Celsius. If I place a balloon in my fridge that initially has a temperature of $22^{\circ} \mathrm{C}$ and a volume of 0.5 liters, what will be the volume of the balloon when it is fully cooled by my refrigerator?
2) A man heats a balloon in the oven. If the balloon initially has a volume of 0.4 liters and a temperature of $20^{\circ} \mathrm{C}$, what will the volume of the balloon be after he heats it to a temperature of $250^{\circ} \mathrm{C}$?
3) On hot days, you may have noticed that potato chip bags seem to "inflate", even though they have not been opened. If I have a 250 mL bag at a temperature of $19^{\circ} \mathrm{C}$, and I leave it in my car which has a temperature of $60^{\circ} \mathrm{C}$, what will the new volume of the bag be?
4) A soda bottle is flexible enough that the volume of the bottle can change even without opening it. If you have an empty soda bottle (volume of 2 L) at room temperature $\left(25^{\circ} \mathrm{C}\right)$, what will the new volume be if you put it in your freezer (-4 ${ }^{0} \mathrm{C}$)?
5) Some students believe that teachers are full of hot air. If I inhale 2.2 liters of gas at a temperature of $18^{\circ} \mathrm{C}$ and it heats to a temperature of $38^{\circ} \mathrm{C}$ in my lungs, what is the new volume of the gas?
6) How hot will a 2.3 L balloon have to get to expand to a volume of 400 L ? Assume that the initial temperature of the balloon is $25^{\circ} \mathrm{C}$.
7) I have made a thermometer which measures temperature by the compressing and expanding of gas in a piston. I have measured that at $100^{\circ} \mathrm{C}$ the volume of the piston is 20 L . What is the temperature outside if the piston has a volume of 15 L? What would be appropriate clothing for the weather?
8) To what temperature must 50.5 mL of N_{2} gas at $33.4^{\circ} \mathrm{C}$ and 1.00 atm pressure be heated to produce the same percentage change in volume as observed when 35.0 mL of O_{2} gas at 1.00 atm pressure is heated from $-13.5^{\circ} \mathrm{C}$ to $25.0^{\circ} \mathrm{C}$.
