Explore the interactions between various combinations of two atoms. Turn on the …
Explore the interactions between various combinations of two atoms. Turn on the force arrows to see either the total force acting on the atoms or the individual attractive and repulsive forces. Try the "Adjustable Attraction" atom to see how changing the parameters affects the interaction.
Explore the interactions between various combinations of two atoms. Turn on the …
Explore the interactions between various combinations of two atoms. Turn on the force arrows to see either the total force acting on the atoms or the individual attractive and repulsive forces. Try the "Adjustable Attraction" atom to see how changing the parameters affects the interaction.
Explore bending of light between two media with different indices of refraction. …
Explore bending of light between two media with different indices of refraction. See how changing from air to water to glass changes the bending angle. Play with prisms of different shapes and make rainbows.
When will objects float and when will they sink? Learn how buoyancy …
When will objects float and when will they sink? Learn how buoyancy works with blocks. Arrows show the applied forces, and you can modify the properties of the blocks and the fluid.
Explore how a capacitor works! Change the size of the plates and …
Explore how a capacitor works! Change the size of the plates and add a dielectric to see how it affects capacitance. Change the voltage and see charges built up on the plates. Shows the electric field in the capacitor. Measure voltage and electric field.
Une série de simulations provenant de l’Université de Colorado à Boulder pour …
Une série de simulations provenant de l’Université de Colorado à Boulder pour les 9e – 12e au sujet des sciences. Cette simulation démontre le processus de la désintrégration alpha.
Regardez les particules alpha s'échapper d'un noyau de polonium, provoquant une désintégration alpha radioactive. Observez comment les temps de désintégration aléatoires sont liés à la demi-vie.
How many calories are in your favorite foods? How much exercise would …
How many calories are in your favorite foods? How much exercise would you have to do to burn off these calories? What is the relationship between calories and weight? Explore these issues by choosing diet and exercise and keeping an eye on your weight.
This simulation lets learners explore how heating and cooling adds or removes …
This simulation lets learners explore how heating and cooling adds or removes energy. Use a slider to heat blocks of iron or brick to see the energy flow. Next, build your own system to convert mechanical, light, or chemical energy into electrical or thermal energy. (Learners can choose sunlight, steam, flowing water, or mechanical energy to power their systems.) The simulation allows students to visualize energy transformation and describe how energy flows in various systems. Through examples from everyday life, it also bolsters understanding of conservation of energy. This item is part of a larger collection of simulations developed by the Physics Education Technology project (PhET).
Students will: Predict the kinetic and potential energy of objects Design a …
Students will: Predict the kinetic and potential energy of objects Design a skate park Examine how kinetic and potential energy interact with each other
Visualize the gravitational force that two objects exert on each other. Change …
Visualize the gravitational force that two objects exert on each other. Change properties of the objects in order to see how it changes the gravity force.
Move the sun, earth, moon and space station to see how it …
Move the sun, earth, moon and space station to see how it affects their gravitational forces and orbital paths. Visualize the sizes and distances between different heavenly bodies, and turn off gravity to see what would happen without it!
Une série de simulations provenant de l’Université de Colorado à Boulder pour …
Une série de simulations provenant de l’Université de Colorado à Boulder pour les 9e – 12e au sujet des sciences.
« Déplacez le soleil, la Terre, la lune et la station spatiale pour observer comment cela affecte leurs forces gravitationnelles et leurs trajectoires orbitales. Visualisez les tailles et les distances entre différents corps célestes, et désactivez la gravité pour voir ce qui se passerait sans elle ! »
Une série de simulations provenant de l’Université de Colorado à Boulder pour …
Une série de simulations provenant de l’Université de Colorado à Boulder pour les 9e – 12e au sujet des sciences. Cette simulation démontre le processus des interactions atomiques.
Explorez les interactions entre diverses combinaisons de deux atomes. Activez les flèches de force pour voir soit la force totale agissant sur les atomes, soit les forces attractives et répulsives individuelles. Essayez l'atome "Attraction réglable" pour voir comment le changement des paramètres affecte l'interaction.
Learn about position, velocity and acceleration vectors. Move the ladybug by setting …
Learn about position, velocity and acceleration vectors. Move the ladybug by setting the position, velocity or acceleration, and see how the vectors change. Choose linear, circular or elliptical motion, and record and playback the motion to analyze the behavior.
Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control …
Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control energy production in a nuclear reactor! (Previously part of the Nuclear Physics simulation - now there are separate Alpha Decay and Nuclear Fission sims.)
Explore how plates move on the surface of the earth. Change temperature, …
Explore how plates move on the surface of the earth. Change temperature, composition, and thickness of plates. Discover how to create new mountains, volcanoes, or oceans!
Broadcast radio waves from KPhET. Wiggle the transmitter electron manually or have …
Broadcast radio waves from KPhET. Wiggle the transmitter electron manually or have it oscillate automatically. Display the field as a curve or vectors. The strip chart shows the electron positions at the transmitter and at the receiver.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.