Students are introduced to the idea of electrical energy. They learn about …
Students are introduced to the idea of electrical energy. They learn about the relationships between charge, voltage, current and resistance. They discover that electrical energy is the form of energy that powers most of their household appliances and toys. In the associated activities, students learn how a circuit works and test materials to see if they conduct electricity. Building upon a general understanding of electrical energy, they design their own potato power experiment. In two literacy activities, students learn about the electrical power grid and blackouts.
Students explore the use of wind power in the design, construction and …
Students explore the use of wind power in the design, construction and testing of "sail cars," which, in this case, are little wheeled carts with masts and sails that are powered by the moving air generated from a box fan. The scientific method is reviewed and reinforced with the use of controls and variables, and the engineering design process is explored. The focus of the activity is on renewable energy, as well as the design, testing and redesign of small cars made from household materials. The activity (and an extension worksheet) includes the use of kinematic equations using distance, time traveled and speed to enforce exponents and decimals.
In a multi-week experiment, student groups gather data from the photobioreactors that …
In a multi-week experiment, student groups gather data from the photobioreactors that they build to investigate growth conditions that make algae thrive best. Using plastic soda bottles, pond water and fish tank aerators, they vary the amount of carbon dioxide (or nutrients or sunlight, as an extension) available to the microalgae. They compare growth in aerated vs. non-aerated conditions. They measure growth by comparing the color of their algae cultures in the bottles to a color indicator scale. Then they graph and analyze the collected data to see which had the fastest growth. Students learn how plants biorecycle carbon dioxide into organic carbon (part of the carbon cycle) and how engineers apply their understanding of this process to maximize biofuel production.
This lesson introduces the ways that engineers study and harness the wind. …
This lesson introduces the ways that engineers study and harness the wind. Students will learn about the different kinds of winds and how to measure wind direction. In addition, students will learn how air pressure creates winds and how engineers build and test wind turbines to harness energy from wind.
Students explore heat transfer and energy efficiency using the context of energy …
Students explore heat transfer and energy efficiency using the context of energy efficient houses. They gain a solid understanding of the three types of heat transfer: radiation, convection and conduction, which are explained in detail and related to the real world. They learn about the many ways solar energy is used as a renewable energy source to reduce the emission of greenhouse gasses and operating costs. Students also explore ways in which a device can capitalize on the methods of heat transfer to produce a beneficial result. They are given the tools to calculate the heat transferred between a system and its surroundings.
Students learn about some of the different climate zones in China and …
Students learn about some of the different climate zones in China and consider what would be appropriate design, construction and materials for houses in those areas. This prepares them to conduct the associated activity(ies) in which they design, build and test small model homes for three different climate zones.
In this activity, students will simulate the equal and unequal distribution of …
In this activity, students will simulate the equal and unequal distribution of our renewable resources. Also, they will consider the impact of our increasing population upon these resources and how engineers develop technologies to create resources.
Students examine how the power output of a photovoltaic (PV) solar panel …
Students examine how the power output of a photovoltaic (PV) solar panel is affected by temperature changes. Using a 100-watt lamp and a small PV panel connected to a digital multimeter, teams vary the temperature of the panel and record the resulting voltage output. They plot the panel's power output and calculate the panel's temperature coefficient.
Through an overview of some of the environmental challenges facing the growing …
Through an overview of some of the environmental challenges facing the growing and evolving country of China today, students learn about the effects of indoor and outdoor air pollution that China is struggling to curb with the help of engineers and scientists. This includes the sources of particulate matter 2.5 and carbon dioxide, and air pollution impacts on the health of people and the environment.
Introduce students to biodiesel, ethanol, and biomass in terms of agricultural and …
Introduce students to biodiesel, ethanol, and biomass in terms of agricultural and societal importance, while strengthening students’ research and technical writing skills.
Students learn how the sun can be used for energy. They learn …
Students learn how the sun can be used for energy. They learn about passive solar heating, lighting and cooking, and active solar engineering technologies (such as photovoltaic arrays and concentrating mirrors) that generate electricity. Students investigate the thermal energy storage capacities of test materials. They learn about radiation and convection as they build a model solar water heater and determine how much it can heat water in a given amount of time. In another activity, students build and compare the performance of four solar cooker designs. In an associated literacy activity, students investigate how people live "off the grid" using solar power.
A national program that works with educators to cultivate environmental action and …
A national program that works with educators to cultivate environmental action and stewardship among students. Living Planet @ School calls teachers and students into action to help nature thrive with hands-on activities in the school community. Make discoveries about many different animals, various habitats, topics regarding climate, tech challenges and more. For both primary and secondary school students.
Students learn how to find the maximum power point (MPP) of a …
Students learn how to find the maximum power point (MPP) of a photovoltaic (PV) panel in order to optimize its efficiency at creating solar power. They also learn about real-world applications and technologies that use this technique, as well as Ohm's law and the power equation, which govern a PV panel's ability to produce power.
Students are introduced to the futuristic concept of the moon as a …
Students are introduced to the futuristic concept of the moon as a place people can inhabit. They brainstorm what people would need to live on the moon and then design a fantastic Moon colony and decide how to power it. Students use the engineering design process, which includes researching various types of energy sources and evaluating which would be best for their moon colonies.
Students examine how the orientation of a photovoltaic (PV) panel relative to …
Students examine how the orientation of a photovoltaic (PV) panel relative to the sun affects the efficiency of the panel. Using sunshine (or a lamp) and a small PV panel connected to a digital multimeter, students vary the angle of the solar panel, record the resulting current output on a worksheet, and plot their experimental results.
Students learn and discuss the advantages and disadvantages of renewable and non-renewable …
Students learn and discuss the advantages and disadvantages of renewable and non-renewable energy sources. They also learn about our nation's electric power grid and what it means for a residential home to be "off the grid."
The following resource contains the external assets (or resources) to accompany the …
The following resource contains the external assets (or resources) to accompany the Sask DLC Field Crop Production B10 / B20 / B30 courses. Please note that this is not the content of the course, but the external assets used to support and deliver it.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.