An interactive applet and associated web page that shows that angle-angle-angle (AAA) …
An interactive applet and associated web page that shows that angle-angle-angle (AAA) is not enough to prove congruence. The applet shows two triangles, one of which can be dragged to resize it, showing that although they have the same angles they are not the same size and thus not congruent. The web page describes all this and has links to other related pages. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.
An interactive applet and associated web page that shows how triangles that …
An interactive applet and associated web page that shows how triangles that have two angles and a non-included side the same must be congruent. The applet shows two triangles, one of which can be reshaped by dragging any vertex. The other changes to remain congruent to it and the two angles and non-included side are outlined in bold to show they are the same measure and are the elements being used to prove congruence. The web page describes all this and has links to other related pages. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.
An interactive applet and associated web page that shows how triangles that …
An interactive applet and associated web page that shows how triangles that have two angles and their included side the same must be congruent. The applet shows two triangles, one of which can be reshaped by dragging any vertex. The other changes to remain congruent to it and the two angles and the included side are outlined in bold to show they are the same measure and are the elements being used to prove congruence. The web page describes all this and has links to other related pages. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.
An interactive applet and associated web page that demonstrate the concept of …
An interactive applet and associated web page that demonstrate the concept of congruent angles. Three angles are shown which always remain congruent as you drag any defining point on any angle. They all change together. This is designed to demonstrate that the angles are considered congruent even if they are in different orientations and the line segments making them up are different lengths. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.
An interactive applet and associated web page that demonstrate congruent line segments …
An interactive applet and associated web page that demonstrate congruent line segments (segments that are the same length). The applet shows three line segments that are the same length. They all have draggable endpoints. As you drag any endpoint the other lines change to remain congruent with the one you are changing. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.
An interactive applet and associated web page that demonstrate the congruence of …
An interactive applet and associated web page that demonstrate the congruence of polygons. The applet presents nine polygons that are in fact congruent, but don't look it because they are reflected and rotated in various ways. If you click on one, it rotates and flips as needed, then slides over the top of another to show it is congruent. The web page describes how to determine if two polygons are congruent. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.
An interactive applet and associated web page that demonstrate the concept of …
An interactive applet and associated web page that demonstrate the concept of congruent triangles. Applets show that triangles a re congruent if the are the same, rotated, or reflected. In each case the user can drag one triangle and see how another triangle changes to remain congruent to it. The web page describes all this and has links to other related pages. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.
The purpose of this lesson is to learn how to find the …
The purpose of this lesson is to learn how to find the surface area of rectangular prisms.
Included is a YouTube video to support Grade 8 Blended Learning Math - Unit 4.3: Measuring Prisms and Cylinders - Surface Area of a Right Rectangular Prism.
The purpose of this lesson is to determine the surface area of …
The purpose of this lesson is to determine the surface area of composite objects made from right rectangular prisms and right cylinders.
Included is a YouTube video to support Grade 9 Blended Learning Math - Unit 1.4: Square Roots and Surface Areas - Surface Areas of Objects Made from Other Composite Objects.
Students learn about common geometry tools and then learn to use protractors …
Students learn about common geometry tools and then learn to use protractors (and Miras, if available) to create and measure angles and reflections. The lesson begins with a recap of the history and modern-day use of protractors, compasses and mirrors. After seeing some class practice problems and completing a set of worksheet-prompted problems, students share their methods and work. Through the lesson, students gain an awareness of the pervasive use of angles, and these tools, for design purposes related to engineering and everyday uses. This lesson prepares students to conduct the associated activity in which they “solve the holes” for hole-in-one multiple-banked angle solutions, make their own one-hole mini-golf courses with their own geometry-based problems and solutions, and then compare their “on paper” solutions to real-world results.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.