As an introduction to bioengineering, student teams are given the engineering challenge …
As an introduction to bioengineering, student teams are given the engineering challenge to design and build prototype artificial limbs using a simple syringe system and limited resources. As part of a NASA lunar mission scenario, they determine which substance, water (liquid) or air (gas), makes the appendages more efficient.
Students learn about the fundamental concepts important to fluid power, which includes …
Students learn about the fundamental concepts important to fluid power, which includes both pneumatic (gas) and hydraulic (liquid) systems. Both systems contain four basic components: reservoir/receiver, pump/compressor, valve, cylinder. Students learn background information about fluid power—both pneumatic and hydraulic systems—including everyday applications in our world (bulldozers, front-end loaders, excavators, chair height lever adjustors, door closer dampers, dental drills, vehicle brakes) and related natural laws. After a few simple teacher demos, they learn about the four components in all fluid power systems, watch two 26-minute online videos about fluid power, complete a crossword puzzle of fluid power terms, and conduct a task card exercise. This prepares them to conduct the associated hands-on activity, using the Portable Fluid Power Demonstrator (teacher-prepared kits) to learn more about the properties of gases and liquids in addition to how forces are transmitted and multiplied within these systems.
Students design and build a mechanical arm that lifts and moves an …
Students design and build a mechanical arm that lifts and moves an empty 12-ounce soda can using hydraulics for power. Small design teams (1-2 students each) design and build a single axis for use in the completed mechanical arm. One team designs and builds the grasping hand, another team the lifting arm, and a third team the rotation base. The three groups must work to communicate effectively through written and verbal communication and sketches.
The following resource contains the external assets (or resources) to accompany the …
The following resource contains the external assets (or resources) to accompany the Sask DLC Agriculture Equipment Technician 20/30 courses.Please note that this is not the content of the course, but the assets used to support and deliver it.
The following file contains the external assets (or resources) to accompany the …
The following file contains the external assets (or resources) to accompany the Sask DLC Mechanical & Automotive A20 course.Please note that this is not the content of the course, but the external assets used to support and deliver it.
Working in teams, students learn the basics of fluid power design using …
Working in teams, students learn the basics of fluid power design using the PFPD as their investigative platform. They investigate the similarities and differences between using pneumatic and hydraulic power in the PFPD. With the main components of the PFPD already assembled, student groups determine the correct way to connect the valves to the actuators using colored, plastic tubing. Once connected, they compete in timed challenges to test their abilities to separate material out of containers using the PFPDs. NOTE: No special pre-requisite knowledge is required for students to be successful in this activity.
Pascal's law states that the pressure applied at one point of the …
Pascal's law states that the pressure applied at one point of the liquid is transmitted equally in all direction. This principal is applied in hydraulic lift, for lifting heavy objects.
In this brief technical demonstration, Fluid Power World senior editor Mary Gannon …
In this brief technical demonstration, Fluid Power World senior editor Mary Gannon and editorial director Paul Heney show the differences in hydraulic fluid viscosity.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.