How does the blackbody spectrum of the sun compare to visible light? …
How does the blackbody spectrum of the sun compare to visible light? Learn about the blackbody spectrum of the sun, a light bulb, an oven, and the earth. Adjust the temperature to see the wavelength and intensity of the spectrum change. View the color of the peak of the spectral curve.
This is an assessment activity for the The Cosmic Ray Telescope for …
This is an assessment activity for the The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) educational kit. Learners will make a poster that explains possible origins of cosmic rays, how they affect people, and what protects us here on Earth. Alternately, they will make a poster describing CRaTER‰Ûªs goal and how it works.
With the help of simple, teacher-led demonstration activities, students learn the basic …
With the help of simple, teacher-led demonstration activities, students learn the basic concepts of heat transfer by means of conduction, convection, and radiation. Students then apply these concepts as they work in teams to solve two problems. One problem requires that they maintain the warm temperature of one soda can filled with water at approximately body temperature, and the other problem is to cause an identical soda can of warm water to cool as much as possible during the same thirty-minute time interval. Students design their solutions using only common, everyday materials. They record the water temperatures in their two soda cans every five minutes, and prepare line graphs in order to visually compare their results to the temperature of an unaltered control can of water.
Students learn about using renewable energy from the Sun for heating and …
Students learn about using renewable energy from the Sun for heating and cooking as they build and compare the performance of four solar cooker designs. They explore the concepts of insulation, reflection, absorption, conduction and convection.
Student groups are given a set of materials: cardboard, insulating materials, aluminum …
Student groups are given a set of materials: cardboard, insulating materials, aluminum foil and Plexiglas, and challenged to build solar ovens. The ovens must collect and store as much of the sun's energy as possible. Students experiment with heat transfer through conduction by how well the oven is insulated and radiation by how well it absorbs solar radiation. They test the effectiveness of their designs qualitatively by baking something and quantitatively by taking periodic temperature measurements and plotting temperature vs. time graphs. To conclude, students think like engineers and analyze the solar oven's strengths and weaknesses compared to conventional ovens.
In this lesson, students will explain CRaTER's purpose and how it works. …
In this lesson, students will explain CRaTER's purpose and how it works. They will also design (using paper and pencil) a cosmic ray detector to answer their own questions. CRaTER's purpose is to identify safe landing sites for future human missions to the moon; discover potential resources on the Moon; and characterize the radiation environment of the Moon. The lesson includes background information for the teacher, questions, and information about student preconceptions. This is lesson 4 of 4 from "The Cosmic Ray Telescope for the Effects of Radiation."
By tracing the movement of radiation released during an accident at the …
By tracing the movement of radiation released during an accident at the Chernobyl nuclear power plant, students see how air pollution, like particulate matter, can become a global issue.
Une série de simulations provenant de l’Université de Colorado à Boulder pour …
Une série de simulations provenant de l’Université de Colorado à Boulder pour les 9e – 12e au sujet des sciences. Cette simulation démontre le processus de la désintrégration alpha.
Regardez les particules alpha s'échapper d'un noyau de polonium, provoquant une désintégration alpha radioactive. Observez comment les temps de désintégration aléatoires sont liés à la demi-vie.
The study of clouds (where they occur, their characteristics, etc) plays a …
The study of clouds (where they occur, their characteristics, etc) plays a key role in the understanding of climate change. This site discusses how the relative thickness and altitude of various cloud types result in their either reflecting solar radiation or transmitting and trapping it, thereby warming Earth's surface. It features text, a scientific illustration, and links to other relevant topics and datasets.
The study of clouds (where they occur, their characteristics, etc) plays a …
The study of clouds (where they occur, their characteristics, etc) plays a key role in the understanding of climate change. This site discusses how the relative thickness and altitude of various cloud types result in their either reflecting solar radiation or transmitting and trapping it, thereby warming Earth's surface. It features text, a scientific illustration, and links to other relevant topics and datasets.
How do greenhouse gases affect the climate? Explore the atmosphere during the …
How do greenhouse gases affect the climate? Explore the atmosphere during the ice age and today. What happens when you add clouds? Change the greenhouse gas concentration and see how the temperature changes. Then compare to the effect of glass panes. Zoom in and see how light interacts with molecules. Do all atmospheric gases contribute to the greenhouse effect?
Through a teacher demonstration using water, heat and food coloring, students see …
Through a teacher demonstration using water, heat and food coloring, students see how convection moves the energy of the Sun from its core outwards. Students learn about the three different modes of heat transfer (convection, conduction, radiation) and how they are related to the Sun and life on our planet.
Students explore heat transfer and energy efficiency using the context of energy …
Students explore heat transfer and energy efficiency using the context of energy efficient houses. They gain a solid understanding of the three types of heat transfer: radiation, convection and conduction, which are explained in detail and related to the real world. They learn about the many ways solar energy is used as a renewable energy source to reduce the emission of greenhouse gasses and operating costs. Students also explore ways in which a device can capitalize on the methods of heat transfer to produce a beneficial result. They are given the tools to calculate the heat transferred between a system and its surroundings.
Heat transfer is an important concept that is a part of everyday …
Heat transfer is an important concept that is a part of everyday life yet often misunderstood by students. In this lesson, students learn the scientific concepts of temperature, heat and the transfer of heat through conduction, convection and radiation. These scientific concepts are illustrated by comparison to magical spells used in the Harry Potter stories.
Students apply the concepts of conduction, convection and radiation as they work …
Students apply the concepts of conduction, convection and radiation as they work in teams to solve two challenges. One problem requires that they maintain the warm temperature of one soda can filled with water at approximately human body temperature, and the other problem is to cause an identical soda can of warm water to cool as much as possible during the same 30-minute time period. Students design their engineering solutions using only common everyday materials, and test their devices by recording the water temperatures in their two soda cans every five minutes.
In this lesson about cosmic rays, students will describe why cosmic rays …
In this lesson about cosmic rays, students will describe why cosmic rays are dangerous to astronauts. Includes information about student preconceptions. This is activity 3 of 4 from "The Cosmic Ray Telescope for the Effects of Radiation (CRaTER)."
Students learn about the nature of thermal energy, temperature and how materials …
Students learn about the nature of thermal energy, temperature and how materials store thermal energy. They discuss the difference between conduction, convection and radiation of thermal energy, and complete activities in which they investigate the difference between temperature, thermal energy and the heat capacity of different materials. Students also learn how some engineering requires an understanding of thermal energy.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.