Updating search results...

Search Resources

1564 Results

View
Selected filters:
  • TeachEngineering
State Your Position
Read the Fine Print
Educational Use
Rating
0.0 stars

To navigate, you must know roughly where you stand relative to your designation, so you can head in the right direction. In locations where landmarks are not available to help navigate (in deserts, on seas), objects in the sky are the only reference points. While celestial objects move fairly predictably, and rough longitude is not too difficult to find, it is not a simple matter to determine latitude and precise positions. In this activity, students investigate the uses and advantages of modern GPS for navigation.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jeff White
Malinda Schaefer Zarske
Matt Lippis
Penny Axelrad
Date Added:
10/14/2015
States of Matter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students act as chemical engineers and use LEGO® MINDSTORMS® NXT robotics to record temperatures and learn about the three states of matter. Properties of matter can be measured in various ways, including volume, mass, density and temperature. Students measure the temperature of water in its solid state (ice) as it is melted and then evaporated.

Subject:
Chemistry
Math
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Akim Faisal
Date Added:
09/18/2014
Static Cling
Read the Fine Print
Educational Use
Rating
0.0 stars

This hands-on activity explores the concept of static electricity. Students attract an O-shaped piece of cereal to a charged comb and watch the cereal jump away when it touches the comb. Students also observe Styrofoam pellets pulling towards a charged comb, then leaping back to the table.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Daria Kotys-Schwartz
Denise Carlson
Malinda Schaefer Zarske
Monica Maxwell
Date Added:
10/14/2015
Stations of Light
Read the Fine Print
Educational Use
Rating
0.0 stars

Student groups rotate through four stations to examine light energy behavior: refraction, magnification, prisms and polarization. They see how a beam of light is refracted (bent) through various transparent mediums. While learning how a magnifying glass works, students see how the orientation of an image changes with the distance of the lens from its focal point. They also discover how a prism works by refracting light and making rainbows. And, students investigate the polar nature of light using sunglasses and polarized light film.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sharon D. Perez-Suarez
Date Added:
10/14/2015
Statistical Analysis of Flexible Circuits
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the technology of flexible circuits, some applications and the photolithography fabrication process. They are challenged to determine if the fabrication process results in a change in the circuit dimensions since, as circuits get smaller and smaller (nano-circuits), this could become very problematic. The lesson prepares students to conduct the associated activity in which they perform statistical analysis (using Excel® and GeoGebra) to determine if the circuit dimension sizes before and after fabrication are in fact statistically different. A PowerPoint® presentation and post-quiz are provided. This lesson and its associated activity are suitable for use during the last six weeks of the AP Statistics course; see the topics and timing note for details.

Subject:
Math
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Cunjiang Yu
Miguel R. Ramirez
Minwei Xu
Song Chen
Date Added:
05/07/2018
Statistical Analysis of Methods to Repair Cracked Steel
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply pre-requisite statistics knowledge and concepts learned in an associated lesson to a real-world state-of-the-art research problem that asks them to quantitatively analyze the effectiveness of different cracked steel repair methods. As if they are civil engineers, students statistically analyze and compare 12 sets of experimental data from seven research centers around the world using measurements of central tendency, five-number summaries, box-and-whisker plots and bar graphs. The data consists of the results from carbon-fiber-reinforced polymer patched and unpatched cracked steel specimens tested under the same stress conditions. Based on their findings, students determine the most effective cracked steel repair method, create a report, and present their results, conclusions and recommended methods to the class as if they were presenting to the mayor and city council. This activity and its associated lesson are suitable for use during the last six weeks of the AP Statistics course; see the topics and timing note for details.

Subject:
Math
Physical Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Botong Zheng
Miguel R. Ramirez
Mina Dawood
Date Added:
05/07/2018
Stay in Shape
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn that math is important in navigation and engineering. They learn about triangles and how they can help determine distances. Ancient land and sea navigators started with the most basic of navigation equations (speed x time = distance). Today, navigational satellites use equations that take into account the relative effects of space and time. However, even these high-tech wonders cannot be built without pure and simple math concepts — basic geometry and trigonometry — that have been used for thousands of years.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jeff White
Malinda Schaefer Zarske
Matt Lippis
Penny Axelrad
Date Added:
10/14/2015
Sticks and Stones Will Break That Bone!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the strength of bones and methods of helping to mend fractured bones. During a class demonstration, a chicken bone is broken by applying a load until it reaches a point of failure (fracture). Then, working as biomedical engineers, students teams design their own splint or cast to help repair a fractured bone, learning about the strength of materials used.

Subject:
Health Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jaime Morales
Malinda Schaefer Zarske
Date Added:
10/14/2015
Stop Heat From Escaping
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students act as engineers to determine which type of insulation would conserve the most energy.

Subject:
Design Studies
Practical & Applied Arts
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Malinda Schaefer Zarske
Natalie Mach
Sharon D. Perez-Suarez
Date Added:
09/18/2014
Stop the Stretching
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about composite materials, tension as a force and how they act on structural components through the design and testing of strips of plastic chair webbing.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brad George
Douglas Prime
Lacey Prouty
Date Added:
09/18/2014
Storing Android Accelerometer Data: App Design
Read the Fine Print
Educational Use
Rating
0.0 stars

Students work through an online tutorial on MIT's App Inventor to learn how to create Android applications. Using those skills, they create their own applications and use them to collect data from an Android device accelerometer and store that data to databases. NOTE: Teachers and students must have a working knowledge of basic programming and App Inventor to complete this lesson. This lesson is not an introduction to MIT's App Inventor and is not recommended for use without prior knowledge of App Inventor to produce an end product. This lesson is an application for App Inventor that allows for the storage of persistent data (data that remains in memory even if an app is closed). This required prior knowledge can come from other experiences with the App Inventor. Also, many additional resources are available, such as tutorials from MIT. This lesson could also be used as an enrichment project for students who are self-motivated to learn the App Inventor software.

Subject:
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Scott Burns
Date Added:
09/18/2014
Stormy Skies
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn that wind and storms can form at the boundaries of interacting high and low pressure air masses. They learn the distinguishing features of the four main types of weather fronts (warm fronts, cold fronts, stationary fronts and occluded fronts) and how those fronts are depicted on a surface weather analysis, or weather map. Students also learn several different ways that engineers help with storm prediction, analysis and protection.

Subject:
Environmental Science
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Glen Sirakavit
Janet Yowell
Malinda Schaefer Zarske
Marissa Forbes
Date Added:
09/18/2014
Straining out the Dirt
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students build a water filter with activated carbon, cotton and other materials to remove chocolate powder from water.

Subject:
Biology
Environmental Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Janet Yowell
Malinda Schaefer
Matt Lundberg
Sharon D. Pérez-Suárez
Date Added:
09/18/2014
Straw Bridges
Read the Fine Print
Educational Use
Rating
0.0 stars

Working as engineering teams, students design and create model beam bridges using plastic drinking straws and tape as their construction materials. Their goal is to build the strongest bridge with a truss pattern of their own design, while meeting the design criteria and constraints. They experiment with different geometric shapes and determine how shapes affect the strength of materials. Let the competition begin!

Subject:
Design Studies
Practical & Applied Arts
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Valenti
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Straw Towers to the Moon
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about civil engineers and work through each step of the engineering design process in two mini-activities that prepare them for a culminating challenge to design and build the tallest straw tower possible, given limited time and resources. First they examine the profiles of the tallest 20 towers in the world. Then in the first mini-activity (one-straw tall tower), student pairs each design a way to keep one straw upright with the least amount of tape and fewest additional straws. In the second mini-activity (no "fishing pole"), the pairs determine the most number of straws possible to construct a vertical straw tower before it bends at 45 degrees—resembling a fishing pole shape. Students learn that the taller a structure, the more tendency it has to topple over. In the culminating challenge (tallest straw tower), student pairs apply what they have learned and follow the steps of the engineering design process to create the tallest possible model tower within time, material and building constraints, mirroring the real-world engineering experience of designing solutions within constraints. Three worksheets are provided, for each of two levels, grades K-2 and grades 3-5. The activity scales up to school-wide, district or regional competition scale.

Subject:
Math
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Tiffany Tu
Date Added:
05/07/2018
Strawkets and Control
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students investigate the effect that fins have on rocket flight. Students construct two paper rockets that they can launch themselves by blowing through a straw. One "strawket" has wings and the other has fins. Students observe how these two control surfaces affect the flight of their strawkets. Students discover how difficult control of rocket flight is and what factors can affect it.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Argrow
Janet Yowell
Jay Shah
Jeff White
Luke Simmons
Malinda Schaefer Zarske
Date Added:
10/14/2015
Strawkets and Thrust
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students investigate the effect that thrust has on rocket flight. Students will make two paper rockets that they can launch themselves by blowing through a straw. These "strawkets" will differ in diameter, such that students will understand that a rocket with a smaller exit nozzle will provide a larger thrust. Students have the opportunity to compare the distances traveled by their two strawkets after predicting where they will land. Since each student will have a slightly different rocket and launching technique, they will observe which factors contribute to a strawket's thrust and performance.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Argrow
Janet Yowell
Jay Shah
Jeff White
Luke Simmons
Malinda Schaefer Zarske
Date Added:
10/14/2015
Strawkets and Weight
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students investigate the effect that weight has on rocket flight. Students construct a variety of their own straw-launched rockets, or "strawkets," that have different weights. Specifically, they observe what happens when the weight of a strawket is altered by reducing its physical size and using different construction materials. Finally, the importance of weight distribution in a rocket is determined.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Argrow
Janet Yowell
Jay Shah
Jeff White
Luke Simmons
Malinda Schaefer Zarske
Date Added:
10/14/2015
Stream Consciousness
Read the Fine Print
Educational Use
Rating
0.0 stars

During this activity, students will learn how environmental engineers monitor water quality in resource use and design. They will employ environmental indicators to assess the water quality of a nearby stream. Students will make general observations of water quality as well as count the number of macroinvertabrates. They will then use the information they collected to create a scale to rate how good or bad the water quality of the stream. Finally, the class will compare their numbers and discuss and defend their results.

Subject:
Environmental Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Malinda Schaefer Zarske
Melissa Straten
Date Added:
09/18/2014