This is a collection of mathematics problems relating to the moons of …
This is a collection of mathematics problems relating to the moons of the solar system. Learners will use simple proportional relationships and work with fractions to study the relative sizes of the larger moons in our solar system, and explore how temperatures change from place to place using the Celsius and Kelvin scales.
In this activity, student teams explore connections between parts of the Earth …
In this activity, student teams explore connections between parts of the Earth system, by examining a time series of environmental data maps. By examining scientific visualizations of a data pair in two time slices, they will see that the environment is the result of the interplay among many processes that take place on varying time and spatial scales. This is one of six interrelated learning activities associated with the GLOBE Earth System Poster, Exploring Connections in Year 2007, which also includes a series of assessment and extension activities. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program.
In this activity, student teams explore the connections between parts of the …
In this activity, student teams explore the connections between parts of the Earth system by examining a time series of environmental data maps. They observe that the environment is the result of the interplay among many processes that take place on varying time and spatial scales, by looking at different six different variables during a single month: insolation, surface temperature, cloud fraction, aerosols, precipitation and biosphere (surface vegetation). This is one of six interrelated learning activities in the student activity guide associated with the GLOBE Earth System Poster, Exploring Connections in Year 2007. A series of assessment and extension activities are included. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program.
In this activity, student teams explore the connections between parts of the …
In this activity, student teams explore the connections between parts of the Earth system by examining a time series of environmental data maps. Each student teams examines images for two variables and determines if there is a direct or inversely proportional relationship exhibited between them throughout the year. The variable pairs that student groups are observing include: insolation and surface temperature; cloud fraction and precipitation; aerosols and biosphere. This is one of six interrelated learning activities associated with the GLOBE Earth System Poster, "Exploring Connections in Year 2007," and includes a series of assessment and extension activities. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program.
In this activity, student teams explore connections between parts of the Earth …
In this activity, student teams explore connections between parts of the Earth system, by examining a time series of environmental data maps. Each team examines a single variable displayed on a global data map, and identify the unit of measure, the range of values, and patterns they observe in the data. Variables include: insolation, surface temperature, precipitation, cloud fraction, aerosols, biopshere. This is one of six interrelated learning activities associated with the GLOBE Earth System Poster, "Exploring Connections in Year 2007," and includes a series of assessment and extension activities. GLOBE (Global Learning and Observation to Benefit the Environment) is a worldwide, hands-on, K-12 school-based science education program.
This book introduces students to some of the most unusual places in …
This book introduces students to some of the most unusual places in our galaxy outside of our solar system. Answering the question, "How many stars are in the sky?" introduces students to basic counting, tallying, and grouping techniques, as well as allowing for the use of simple proportions.
Students will explore time series plots and raw data to understand the …
Students will explore time series plots and raw data to understand the role of sea surface temperature increases on arctic ice melt. This is part three of a four-part activity on polar science. The activity builds on the knowledge gained in Using Data and Images to Understand Albedo (part 2). Extension activities examining air and sea surface temperature in relation to changing Earth albedo are included. Information is provided on data access using the NOAA Earth System Research Laboratory Web site. This activity is one of several learning activities connected with the 2007 GLOBE Earth system poster.
In this problem set, learners will analyze an image of Washington, DC, …
In this problem set, learners will analyze an image of Washington, DC, taken from orbit. They will determine scale and take measurements of several features in the image. A link to more images taken from the International Space Station and the answer key are provided. This is part of Earth Math: A Brief Mathematical Guide to Earth Science and Climate Change.
In this lesson, learners will construct their own 3-D glasses in order …
In this lesson, learners will construct their own 3-D glasses in order to use them on 3-D images, such as images of the Sun from the STEREO spacecraft. This activity requires special materials, such as red and blue acetate paper and can be used with an accompanying activity, titled Create Your Own 3-D Images.
As science extension activities, this book of problems introduces students to mapping …
As science extension activities, this book of problems introduces students to mapping the shape of the Milky Way galaxy, and how to identify the various kinds of galaxies in our universe. Students also learn about the shapes and sizes of other galaxies in our universe as they learn how to classify them. The math problems cover basic scientific notation skills and how they apply to working with astronomically large numbers. It also provides exercises in plotting points on a Cartesian plane to map the various features of our Milky Way.
This activity introduces students to the visible light spectrum, and demonstrates what …
This activity introduces students to the visible light spectrum, and demonstrates what happens to the appearance of an image when certain wavelengths of light are blocked by filters or made visible using special tools.åÊStudents are lead through experiments with light and filters, demonstrating that the broader the range of the electromagnetic spectrum we can detect, the more information we gather about the universe. By completing this activity, students gain background information that is necessary for activities that follow this one. This activity is part of the "Cosmic Questions: Our Place in Space and Time" educator's guide that was developed to support the Cosmic Questions exhibit. Activities in the guide can be used in conjunction with, or independently of, the exhibt.
In this activity, students use base-two slide rules, log tapes, and calculators …
In this activity, students use base-two slide rules, log tapes, and calculators to practice raising exponents in base notation and pulling down exponents in log notation. Students will develop an understanding that antilog notation expresses the exact same idea as raising a base to a power.åÊThis activity is activity C2 in the "Far Out Math" educator's guide. Lessons in the guide include activities in which students measure, compare quantities as orders of magnitude, become familiar with scientific notation, and develop an understanding of exponents and logarithms using examples from NASA's GLAST mission. These are skills needed to understand the very large and very small quantities characteristic of astronomical observations. Note: In 2008, GLAST was renamed Fermi, for the physicist Enrico Fermi.
This is a lesson about extremophiles and using DNA sequences to classify …
This is a lesson about extremophiles and using DNA sequences to classify them. Learners will describe the characteristics of a newly discoverd thermophyllic organism and use the DNA sequence to place that organism in the phylogenetic tree of life. Includes teacher notes, learning objectives, and assessment of prior knowledge and preconceptions. This is Lesson 3 in Exploring Deep-Subsurface Life. Earth Analogues for Possible Life on Mars: Lessons and Activities
Research physical scientist, Dr. Dalia Kirschbaum, is featured in this short (~3 …
Research physical scientist, Dr. Dalia Kirschbaum, is featured in this short (~3 min.) video. Dr. Kirschbaum explains how the integration of her initial interest in math and her subsequent interest in the science of natural disasters lead to her career focus of landslide modeling. Now part of the NASA Global Precipitation Measurement (GPM) team, she communicates about the GPM mission and data to the public and to others who use it in their work and/or research.
This activity shows how an ordinary ruler can measure human reaction time …
This activity shows how an ordinary ruler can measure human reaction time (RT). Learners will convert a standard ruler into a time ruler (relating time and distance) and measure each others RT. They will also calculate means and variances and the RT required to accomplish a specific task. Additional resources and an extension to this activity are available. This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications.
This paper model of the Fermi Gamma-ray Space Telescope includes three pages …
This paper model of the Fermi Gamma-ray Space Telescope includes three pages of parts that can be cut out and assembled using common household items. It also provides a short description of the scientific instruments on board Fermi, as well as links to other resources about its instruments.
This is a series of five activities about geology on the moon. …
This is a series of five activities about geology on the moon. Learners will explore lunar stratigraphy (caused by lava flows), impact craters, the moon's history, spacecraft design in which students build models of the LRO out of edible or non-edible materials, and the future of lunar exploration. This guide includes the activities from the original Field Trip to the Moon guide plus activities relating to these two moon missions - Lunar Reconnaissance Orbiter and the Lunar Crater Observation and Sensing Satellite.
This kick-off activity sets the stage for further explorations and activities in …
This kick-off activity sets the stage for further explorations and activities in Explore! To the Moon and Beyond! - a resource developed specifically for use in libraries. As a group, learners will discuss what they know about Earth's Moon. They read books to learn more about the lunar environment and history of exploration. They use their knowledge to create a drawing or model of the landscape (optional).
This is a lesson about Saturn. Learners will create a multilayered book …
This is a lesson about Saturn. Learners will create a multilayered book with diagrams of Saturn showing its various layers, ring system, and many moons. To enhance background information on Saturn, students will practice listening to informational text. Students will also create their own texts to support and explain their Saturn diagrams. This is lesson 9 of 10 in "Reading, Writing & Rings," for grades 1-2.
Learners will explore Jupiter's origins through three stories. First, they model their …
Learners will explore Jupiter's origins through three stories. First, they model their own lifetimes by tying knots in lengths of yarn to represent key events in their pasts. Then, children listen to and act out a cultural origins story, such as the Skytellers stories told by Native American master storytellers. Finally, they explore Jupiter's story by modeling a timeline from today back to its "birthday." They use the timeline to visually demonstrate that the Big Bang occurred much earlier in the past. Children will discover how the Juno mission to Jupiter will help unveil how our solar system - including Earth - came to be. The activities are from Explore! Jupiter's Family Secrets, a series designed to engage children in space and planetary science in libraries and informal learning environments.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.