Updating search results...

Search Resources

29 Results

View
Selected filters:
  • circles
Setting Up Sprinklers
Unrestricted Use
CC BY
Rating
0.0 stars

This modeling task involves several different types of geometric knowledge and problem-solving: finding areas of sectors of circles (G-C.5), using trigonometric ratios to solve right triangles (G-SRT.8), and decomposing a complicated figure involving multiple circular arcs into parts whose areas can be found (MP.7).

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Seven Circles I
Unrestricted Use
CC BY
Rating
0.0 stars

This task is intended to help model a concrete situation with geometry. Placing the seven pennies in a circular pattern is a concrete and fun experiment which leads to a genuine mathematical question: does the physical model with pennies give insight into what happens with seven circles in the plane?

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
08/20/2012
Seven Circles II
Unrestricted Use
CC BY
Rating
0.0 stars

This task provides a concrete geometric setting in which to study rigid transformations of the plane. It is important for students to be able to visualize and execute these transformations and for this purpose it would be beneficial to have manipulatives and it will important that the students be able to label the vertices of the hexagon with which they are working.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
08/20/2012
Tangent Lines and the Radius of a Circle
Unrestricted Use
CC BY
Rating
0.0 stars

This task presents a foundational result in geometry, presented with deliberately sparse guidance in order to allow a wide variety of approaches. Teachers should of course feel free to provide additional scaffolding to encourage solutions or thinking in one particular direction. We include three solutions which fall into two general approaches, one based on reference to previously-derived results (e.g., the Pythagorean Theorem), and another conducted in terms of the geometry of rigid transformations.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
11/13/2012
Tangent to a Circle from a Point
Unrestricted Use
CC BY
Rating
0.0 stars

The construction of the tangent line to a circle from a point outside of the circle requires knowledge of a couple of facts about circles and triangles. First, students must know, for part (a), that a triangle inscribed in a circle with one side a diameter is a right triangle. This material is presented in the tasks ''Right triangles inscribed in circles I.'' For part (b) students must know that the tangent line to a circle at a point is characterized by meeting the radius of the circle at that point in a right angle: more about this can be found in ''Tangent lines and the radius of a circle.''

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
01/21/2013
Three Points Defining a Circle
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This 10-minute video lesson shows that three points uniquely define a circle and that the center of a circle is the circumcenter for any triangle that the circle is circumscribed about.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Salman Khan
Date Added:
10/10/2018
Two Wheels and a Belt
Unrestricted Use
CC BY
Rating
0.0 stars

This task combines two skills from domain G-C: making use of the relationship between a tangent segment to a circle and the radius touching that tangent segment (G-C.2), and computing lengths of circular arcs given the radii and central angles (G-C.5). It also requires students to create additional structure within the given problem, producing and solving a right triangle to compute the required central angles (G-SRT.8).

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Álgebra II Módulo 2
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)

El módulo 2 se basa en el trabajo previo de los estudiantes con unidades y con funciones del álgebra I, y con relaciones y círculos trigonométricos de la geometría de la escuela secundaria. El corazón del módulo es el estudio de definiciones precisas de seno y coseno (así como tangente y las cofunciones) utilizando geometría transformacional de la geometría de la escuela secundaria. Esta precisión lleva a una discusión de una unidad matemáticamente natural de medida rotacional, un radian, y los estudiantes comienzan a desarrollar fluidez con los valores de las funciones trigonométricas en términos de radianes. Los estudiantes grafican funciones trigonométricas sinusoidales y otras, y usan los gráficos para ayudar a modelar y descubrir propiedades de las funciones trigonométricas. El estudio de las propiedades culmina en la prueba de la identidad pitagórica y otras identidades trigonométricas.

Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.

English Description:
Module 2 builds on students' previous work with units and with functions from Algebra I, and with trigonometric ratios and circles from high school Geometry. The heart of the module is the study of precise definitions of sine and cosine (as well as tangent and the co-functions) using transformational geometry from high school Geometry. This precision leads to a discussion of a mathematically natural unit of rotational measure, a radian, and students begin to build fluency with the values of the trigonometric functions in terms of radians. Students graph sinusoidal and other trigonometric functions, and use the graphs to help in modeling and discovering properties of trigonometric functions. The study of the properties culminates in the proof of the Pythagorean identity and other trigonometric identities.

Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.

Subject:
Math
Material Type:
Module
Provider:
EngageNY
Date Added:
08/15/2014