Updating search results...

Search Resources

41 Results

View
Selected filters:
  • congruence
Inscribing a Triangle in a Circle
Unrestricted Use
CC BY
Rating
0.0 stars

This problem introduces the circumcenter of a triangle and shows how it can be used to inscribe the triangle in a circle. It also shows that there cannot be more than one circumcenter.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
01/21/2013
Inscribing a circle in a Triangle II
Unrestricted Use
CC BY
Rating
0.0 stars

This task focuses on a remarkable fact which comes out of the construction of the inscribed circle in a triangle: the angle bisectors of the three angles of triangle ABC all meet in a point.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
01/21/2013
Locating Warehouse
Unrestricted Use
CC BY
Rating
0.0 stars

This task can be implemented in a variety of ways. For a class with previous exposure to the incenter or angle bisectors, part (a) could be a quick exercise in geometric constructions,. Alternatively, this could be part of a full introduction to angle bisectors, culminating in a full proof that the three angle bisectors are concurrent, an essentially complete proof of which is found in the solution below.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Módulo 2 de grado 8: El concepto de congruencia
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)

En este módulo, los estudiantes aprenden sobre traducciones, reflexiones y rotaciones en el avión y, lo que es más importante, cómo usarlas para definir con precisión el concepto de congruencia. A lo largo del tema A, sobre las definiciones y propiedades de los movimientos rígidos básicos, los estudiantes verifican experimentalmente sus propiedades básicas y, cuando son factibles, profundicen su comprensión de estas propiedades utilizando el razonamiento. Todas las lecciones del tema B demuestran a los estudiantes la capacidad de secuenciar varias combinaciones de movimientos rígidos mientras mantienen las propiedades básicas de los movimientos rígidos individuales. Los estudiantes aprenden que la congruencia es solo una secuencia de movimientos rígidos básicos en el Tema C, y el Tema D comienza el aprendizaje del Teorema Pitagórico.

Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.

English Description:
In this module, students learn about translations, reflections, and rotations in the plane and, more importantly, how to use them to precisely define the concept of congruence. Throughout Topic A, on the definitions and properties of the basic rigid motions, students verify experimentally their basic properties and, when feasible, deepen their understanding of these properties using reasoning. All the lessons of Topic B demonstrate to students the ability to sequence various combinations of rigid motions while maintaining the basic properties of individual rigid motions. Students learn that congruence is just a sequence of basic rigid motions in Topic C, and Topic D begins the learning of Pythagorean Theorem.

Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.

Subject:
Math
Material Type:
Module
Provider:
EngageNY
Date Added:
09/21/2013
Módulo de geometría 1: congruencia, prueba y construcciones
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)

El módulo 1 incorpora cambios críticos en la geometría según lo descrito por el núcleo común. El corazón del módulo es el estudio de las transformaciones y el papel que juegan las transformaciones para definir la congruencia. El tema de las transformaciones se introduce de manera principalmente experiencial en el grado 8 y se formaliza en el grado 10 con el uso de un lenguaje preciso. La necesidad de un uso claro del lenguaje se enfatiza a través del vocabulario, el proceso de escribir pasos para realizar construcciones y, en última instancia, como parte del proceso de escritura de prueba.

Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.

English Description:
Module 1 embodies critical changes in Geometry as outlined by the Common Core. The heart of the module is the study of transformations and the role transformations play in defining congruence. The topic of transformations is introduced in a primarily experiential manner in Grade 8 and is formalized in Grade 10 with the use of precise language. The need for clear use of language is emphasized through vocabulary, the process of writing steps to perform constructions, and ultimately as part of the proof-writing process.

Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.

Subject:
Math
Material Type:
Module
Provider:
EngageNY
Date Added:
05/14/2013
Módulo de geometría 2: similitud, prueba y trigonometría
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)

Así como se utilizan movimientos rígidos para definir la congruencia en el Módulo 1, se agregan dilataciones para definir la similitud en el Módulo 2. Para poder discutir la similitud, los estudiantes primero deben comprender claramente cómo se comportan las dilataciones. Esto se hace en dos partes, al estudiar cómo las dilataciones producen dibujos de escala y razonando por qué las propiedades de las dilataciones deben ser ciertas. Una vez que las dilataciones se establecen claramente, se definen transformaciones de similitud y se examinan las relaciones de longitud y ángulo, lo que produce criterios de similitud triangular. Sigue una mirada profunda a la similitud dentro de los triángulos rectos, y finalmente el módulo termina con un estudio de trigonometría del triángulo recto.

Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.

English Description:
Just as rigid motions are used to define congruence in Module 1, so dilations are added to define similarity in Module 2.  To be able to discuss similarity, students must first have a clear understanding of how dilations behave.  This is done in two parts, by studying how dilations yield scale drawings and reasoning why the properties of dilations must be true. Once dilations are clearly established, similarity transformations are defined and length and angle relationships are examined, yielding triangle similarity criteria.  An in-depth look at similarity within right triangles follows, and finally the module ends with a study of right triangle trigonometry.

Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.

Subject:
Math
Material Type:
Module
Provider:
EngageNY
Date Added:
07/03/2014
Módulo de geometría 5: círculos con y sin coordenadas
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)

Este módulo reúne las ideas de similitud y congruencia y las propiedades de la longitud, el área y las construcciones geométricas estudiadas durante todo el año. También incluye las propiedades específicas de los triángulos, cuadriláteros especiales, líneas paralelas y transversales, y movimientos rígidos establecidos y construidos sobre esta historia matemática. El enfoque de este módulo está en las posibles relaciones geométricas entre un par de líneas de intersección y un círculo dibujado en la página.

Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.

English Description:
This module brings together the ideas of similarity and congruence and the properties of length, area, and geometric constructions studied throughout the year.  It also includes the specific properties of triangles, special quadrilaterals, parallel lines and transversals, and rigid motions established and built upon throughout this mathematical story.  This module's focus is on the possible geometric relationships between a pair of intersecting lines and a circle drawn on the page.

Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.

Subject:
Math
Material Type:
Module
Provider:
EngageNY
Date Added:
04/15/2016
Placing a Fire Hydrant
Unrestricted Use
CC BY
Rating
0.0 stars

This task can be implemented in a variety of ways. For a class with previous exposure to properties of perpendicular bisectors, part (a) could be a quick exercise in geometric constructions, and an application of the result. Alternatively, this could be part of an introduction to perpendicular bisectors, culminating in a full proof that the three perpendicular bisectors are concurrent at the circumcenter of the triangle, an essentially complete proof of which is found in the solution below.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Points Equidistant from Two Points in the Plane
Unrestricted Use
CC BY
Rating
0.0 stars

This task is part of a series presenting important foundational geometric results and constructions which are fundamental for more elaborate arguments. They are presented without a real world context so as to see the important hypotheses and logical steps involved as clearly as possible.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
01/11/2013
Reflected Triangles
Unrestricted Use
CC BY
Rating
0.0 stars

This task is a reasonably straight-forward application of rigid motion geometry, with emphasis on ruler and straightedge constructions, and would be suitable for assessment purposes.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Reflecting Reflections
Unrestricted Use
CC BY
Rating
0.0 stars

The goal of this task is to give students an opportunity to experiment with reflections of triangles on a coordinate grid. Students are not prompted in the question to list the coordinates of the different triangle vertices but this is a natural extension of the task.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
12/18/2012
Seven Circles I
Unrestricted Use
CC BY
Rating
0.0 stars

This task is intended to help model a concrete situation with geometry. Placing the seven pennies in a circular pattern is a concrete and fun experiment which leads to a genuine mathematical question: does the physical model with pennies give insight into what happens with seven circles in the plane?

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
08/20/2012
Seven Circles II
Unrestricted Use
CC BY
Rating
0.0 stars

This task provides a concrete geometric setting in which to study rigid transformations of the plane. It is important for students to be able to visualize and execute these transformations and for this purpose it would be beneficial to have manipulatives and it will important that the students be able to label the vertices of the hexagon with which they are working.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
08/20/2012
Tangent Lines and the Radius of a Circle
Unrestricted Use
CC BY
Rating
0.0 stars

This task presents a foundational result in geometry, presented with deliberately sparse guidance in order to allow a wide variety of approaches. Teachers should of course feel free to provide additional scaffolding to encourage solutions or thinking in one particular direction. We include three solutions which fall into two general approaches, one based on reference to previously-derived results (e.g., the Pythagorean Theorem), and another conducted in terms of the geometry of rigid transformations.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
11/13/2012
Tile Patterns II: Hexagons
Unrestricted Use
CC BY
Rating
0.0 stars

ile patterns will be familiar with students both from working with geometry tiles and from the many tiles they encounter in the world. Here one of the most important examples of a tiling, with regular hexagons, is studied in detail. This provides students an opportunity to use what they know about the sum of the angles in a triangle and also the sum of angles which make a line.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
01/23/2013
Tile Patterns I: Octagons and Squares
Unrestricted Use
CC BY
Rating
0.0 stars

This task aims at explaining why four regular octagons can be placed around a central square, applying student knowledge of triangles and sums of angles in both triangles and more general polygons.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
01/23/2013
Triangle Congruence with Coordinates
Unrestricted Use
CC BY
Rating
0.0 stars

This task gives students a chance to explore several issues relating to rigid motions of the plane and triangle congruence. As an instructional task, it can help students build up their understanding of the relationship between rigid motions and congruence.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
01/04/2013
When Does SSA Work to Determine Triangle Congruence?
Unrestricted Use
CC BY
Rating
0.0 stars

The triangle congruence criteria, SSS, SAS, ASA, all require three pieces of information. It is interesting, however, that not all three pieces of information about sides and angles are sufficient to determine a triangle up to congruence. In this problem, we considered SSA. Also insufficient is AAA, which determines a triangle up to similarity. Unlike SSA, AAS is sufficient because two pairs of congruent angles force the third pair of angles to also be congruent.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Why Does ASA Work?
Unrestricted Use
CC BY
Rating
0.0 stars

The two triangles in this problem share a side so that only one rigid transformation is required to exhibit the congruence between them. In general more transformations are required and the "Why does SSS work?'' and "Why does SAS work?'' problems show how this works.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012
Why Does SAS Work?
Unrestricted Use
CC BY
Rating
0.0 stars

For these particular triangles, three reflections were necessary to express how to move from ABC to DEF. Sometimes, however, one reflection or two reflections will suffice. Since any rigid motion will take triangle ABC to a congruent triangle DEF, this shows the remarkable fact that any rigid motion of the plane can be expressed as one reflection, a composition of two reflections, or a composition of three reflections.

Subject:
Math
Material Type:
Activity/Lab
Provider:
Illustrative Mathematics
Provider Set:
Illustrative Mathematics
Author:
Illustrative Mathematics
Date Added:
05/01/2012