Updating search results...

Search Resources

594 Results

View
Selected filters:
  • physics
Preventing Flint - Environmental Engineering: Crash Course Engineering #29
Rating
0.0 stars

A lot of work goes into managing our impact on the environment and its impact on us. That work is the work of environmental engineers. In this episode we’ll explore water quality, air quality, noise pollution, waste management, and more.

Subject:
Physical Science
Physics
Science
Material Type:
Activity/Lab
Author:
Crashcourse
Date Added:
02/07/2019
Probability: Central limit theorem
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

After heuristically deriving Stirling's approximation in the first video segment, we outline a simple example of the central limit theorem for the case of the binomial distribution. In the final segment, we explain how the central limit theorem is used to suggest that physical experiments are characterized by normally-distributed (Gaussian) fluctuations while fluctuations in biological experiments are said to fill out log-normal distributions.

Subject:
Math
Physics
Science
Material Type:
Lesson
Provider:
Look At Physics
Provider Set:
A Mathematical Way to Think About Biology
Author:
David Liao
Date Added:
10/08/2012
Projectile Motion
Read the Fine Print
Rating
0.0 stars

Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance. Make a game out of this simulation by trying to hit a target.

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Wendy Adams
Date Added:
04/07/2006
Properties of Fresh and Sea Water
Read the Fine Print
Rating
0.0 stars

This is a hands-on lab activity about the properties and states of water. Learners will complete activities using different liquids to understand the three states of matter, explain how the high heat capacity and abundance of liquid water makes life on Earth possible, and understand that water containing salts and minerals has different properties than fresh water. They will graph data to analyze and articulate results and conclusions. The lab is set up as three stations that small groups of students rotate through; it can also be done as demonstrations (e.g., for younger students). Background information, common preconceptions, a glossary and more is included. This activity is part of the Aquarius Hands-on Laboratory Activities.

Subject:
Math
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
10/05/2018
Protecting Life:The Martian Challenge
Read the Fine Print
Rating
0.0 stars

This module focuses on ultraviolet radiation on Earth and in space and how it affects life. Learners will construct their own "martian" using craft materials and UV beads. They will explore how UV radiation from the Sun can affect living things, comparing conditions on Earth and Mars, and then discuss ways in which organisms may protect themselves from UV radiation. They will then take part in a Mars Creature Challenge, where they will change their creature to help it survive harsh UV conditions ‰ÛÓ like on Mars. They will then test their Mars creatures by subjecting them to different environmental conditions to see how well they "survive" in a martian environment. This investigation will explore shelter and protection as one of life‰Ûªs requirements and how Earth‰Ûªs atmosphere protects life from harmful UV radiation. It also includes specific tips for effectively engaging girls in STEM. This is activity 5 in Explore: Life on Mars? that was developed specifically for use in libraries.

Subject:
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
10/05/2018
Protecting the Mummified Troll
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the (hypothetical) task of developing an invisible (non-intrusive) security system to protect the school's treasured mummified troll! Solving the challenge depends on an understanding of the properties of light. After being introduced to the challenge question, students generate ideas and consider the knowledge required find solutions. They watch a portion of the "Mythbuster's Crimes and Myth-Demeanors" episode ($20), which helps direct their research and learning toward solving the challenge. They begin to study laser applications in security systems, coming to realize the role of lasers in today's society.

Subject:
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Meghan Murphy
Date Added:
09/18/2014
Pyramid Building: How to Use a Wedge
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how simple machines, including wedges, were used in building both ancient pyramids and present-day skyscrapers. In a hands-on activity, students test a variety of wedges on different materials (wax, soap, clay, foam). Students gain an understanding of how simple machines are used in engineering applications to make our lives and work easier.

Subject:
Math
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jacquelyn Sullivan
Lawrence E. Carlson
Lindsey Wright
Malinda Schaefer Zarske
Date Added:
09/18/2014
Quantum Bound States
Read the Fine Print
Rating
0.0 stars

Explore the properties of quantum "particles" bound in potential wells. See how the wave functions and probability densities that describe them evolve (or don't evolve) over time.

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Kathy Perkins
Sam McKagan
Date Added:
10/02/2006
Quantum Tunneling and Wave Packets
Read the Fine Print
Rating
0.0 stars

Watch quantum "particles" tunnel through barriers. Explore the properties of the wave functions that describe these particles.

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Chris Malley
Kathy Perkins
Sam McKagan
Date Added:
08/28/2006
Quantum Wave Interference
Read the Fine Print
Rating
0.0 stars

When do photons, electrons, and atoms behave like particles and when do they behave like waves? Watch waves spread out and interfere as they pass through a double slit, then get detected on a screen as tiny dots. Use quantum detectors to explore how measurements change the waves and the patterns they produce on the screen.

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Sam McKagan
Sam Reid
Wendy Adams
Date Added:
09/09/2006
Radiating Charge
Read the Fine Print
Rating
0.0 stars

The electric field lines from a point charge evolve in time as the charge moves. Watch radiation propagate outward at the speed of light as you wiggle the charge. Stop a moving charge to see bremsstrahlung (braking) radiation. Explore the radiation patterns as the charge moves with sinusoidal, circular, or linear motion. You can move the charge any way you like, as long as you donŠ—Èt exceed the speed of light.

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Ariel Paul
Michael Dubson
Date Added:
02/01/2013
Radio Waves & Electromagnetic Fields
Read the Fine Print
Rating
0.0 stars

Broadcast radio waves from KPhET. Wiggle the transmitter electron manually or have it oscillate automatically. Display the field as a curve or vectors. The strip chart shows the electron positions at the transmitter and at the receiver.

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Kathy Perkins
Michael Dubson
Noah Podolefsky
Ron LeMaster
Wendy Adams
Date Added:
10/06/2006
Radioactive Dating Game
Read the Fine Print
Rating
0.0 stars

Learn about different types of radiometric dating, such as carbon dating. Understand how decay and half life work to enable radiometric dating to work. Play a game that tests your ability to match the percentage of the dating element that remains to the age of the object.

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
John Blanco
Kathy Perkins
Noah Podolefsky
Wendy Adams
Date Added:
01/01/2009
The Ramp
Read the Fine Print
Rating
0.0 stars

Explore forces, energy and work as you push household objects up and down a ramp. Lower and raise the ramp to see how the angle of inclination affects the parallel forces acting on the file cabinet. Graphs show forces, energy and work.

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl
Carl Wieman
Danielle Harlow
Kathy Perkins
Sam Reid
Trish Loeblein
Wendy Adams
Woieman
Date Added:
10/05/2006
Ramp: Forces and Motion
Read the Fine Print
Rating
0.0 stars

Explore forces and motion as you push household objects up and down a ramp. Lower and raise the ramp to see how the angle of inclination affects the parallel forces. Graphs show forces, energy and work.

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Noah Podolefsky
Sam Reid
Trish Loeblein
Date Added:
10/01/2010
Reaching breaking point: Materials, Stresses, and Toughness: Crash Course Engineering #18
Rating
0.0 stars

Today we’re going to start thinking about materials that are used in engineering. We’ll look at mechanical properties of materials, stress-strain diagrams, elasticity and toughness, and describe other material properties like hardness, creep strength, and fatigue strength.

Subject:
Physical Science
Physics
Science
Material Type:
Activity/Lab
Author:
Crashcourse
Date Added:
02/07/2019
Reactants, Products and Leftovers
Read the Fine Print
Rating
0.0 stars

Create your own sandwich and then see how many sandwiches you can make with different amounts of ingredients. Do the same with chemical reactions. See how many products you can make with different amounts of reactants. Play a game to test your understanding of reactants, products and leftovers. Can you get a perfect score on each level?

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Kathy Perkins
Kelly Lancaster
Patricia Loeblein
Robert Parson
Wendy Adams
Date Added:
03/01/2010
Reactions & Rates
Read the Fine Print
Rating
0.0 stars

Explore what makes a reaction happen by colliding atoms and molecules. Design experiments with different reactions, concentrations, and temperatures. When are reactions reversible? What affects the rate of a reaction?

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Linda Koch
Mindy Gratny
Ron LeMaster
Trish Loeblein
Date Added:
11/15/2007
Reading & Rhythm
Read the Fine Print
Rating
0.0 stars

Percussionist Steven Angel has developed an innovative program that uses rhythm to help struggling students improve their reading fluency and comprehension. Deceptively simple -- a facilitator taps out a basic rhythm while students read aloud -- the method relaxes students, helps them focus, and is effective in after-school intervention programs as well as traditional classrooms.

Subject:
English Language Arts
Material Type:
Teaching/Learning Strategy
Provider:
Teaching Channel
Provider Set:
Teaching Channel
Date Added:
05/24/2018
The Relationship Between Science and Technology
Read the Fine Print
Rating
0.0 stars

In this activity, students will learn how technology can help scientists solve a problem. One of the challenges scientists face with any spacecraft is attitude control. Students will be introduced to the problem of attitude control in space through an experiment using angular momentum, and experience two different ways scientists address this problem. Students begin by discussing the technology(ies) that powers satellites and enable(s) them to move through space. Students then engage in an angular momentum experiment.åÊEstimated cost of this activity does not include the cost of the bicycle wheel for the angular momentum experiment. This activity is one of several in the Swift: Eyes through Time collection available on the Teachers' Domain website.

Subject:
Physics
Science
Material Type:
Lesson
Simulation
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
10/05/2018