Updating search results...

Search Resources

898 Results

View
Selected filters:
  • Physics
Uncertainty propagation: Curve fitting
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

Students will learn a sample-variance curve fitting method that can be used to determine whether a set of experimental data appears to have been generated by a model. This method is based on minimizing the reduced chi-squared value. This video includes a reminder to inspect normalized residuals before reporting fitted parameters.

Subject:
Math
Physics
Science
Material Type:
Lesson
Provider:
Look At Physics
Provider Set:
A Mathematical Way to Think About Biology
Author:
David Liao
Date Added:
10/08/2012
Uncertainty propagation: Quadrature
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

The quadrature formula relates the fluctuations of a function to fluctuations in the variables on which the function depends. In this derivation, we approximate a multivariable function using a Taylor expansion, and we assume that fluctuations in the underlying variables are statistically independent, which allows us to apply an identity previously derived in the unit on statistics. Namely, "variances of sums are sums of variances" for variables that fluctuate independently.

Subject:
Math
Physics
Science
Material Type:
Lesson
Provider:
Look At Physics
Provider Set:
A Mathematical Way to Think About Biology
Author:
David Liao
Date Added:
10/08/2012
Uncertainty propagation: Sample estimates
Conditional Remix & Share Permitted
CC BY-SA
Rating
0.0 stars

In the first video segment, we estimate properties of a parent distribution (i.e. mean and standard deviation) from a sample of a finite collection of data measurements, and we describe the standard error (SE). In the second segment, we derive the famous square-root of n factor that appears in the SE formula. The third video segment describes the visual comparison of error bars, and the fourth segment warns against a mistake that can generate inappropriate claims of statistical significance during this kind of analysis.

Subject:
Math
Physics
Science
Material Type:
Lesson
Provider:
Look At Physics
Provider Set:
A Mathematical Way to Think About Biology
Author:
David Liao
Date Added:
10/08/2012
Under Pressure
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about Pascal's law, an important concept behind the engineering of dam and lock systems, such as the one that Thirsty County wants Splash Engineering to design for the Birdseye River (an ongoing hypothetical engineering scenario). Students observe the behavior of water in plastic water bottles spilling through holes punctured at different heights, seeing the distance water spurts from the holes, learning how water at a given depth exerts equal pressure in all directions, and how water at increasing depths is under increasing pressure.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denali Lander
Denise W. Carlson
Jeff Lyng
Kristin Field
Lauren Cooper
Megan Podlogar
Timothy M. Dittrich
Date Added:
09/18/2014
Understanding Electricity with Photovoltaics
Read the Fine Print
Rating
0.0 stars

Sixth grade students at Eckstein Middle School use their understanding of electricity to explore electrical current in a circuit with photovoltaic cells.Using a lamp to model the sun, students work in teams and connect different power sources in series and parallel circuits to determine the effects on light bulbs or small motors. Discussion between students about the differences in voltage and the flow of electrons from negative to positive terminals provide opportunities for students to explain their learning and for the teacher to assess their understanding.Learning is extended beyond the experiment as students use photovoltaic cells to power equipment and offset electrical load in the classroom.

Subject:
Physics
Science
Material Type:
Teaching/Learning Strategy
Provider:
Teaching Channel
Provider Set:
Teaching Channel
Author:
Jessica Levine
Date Added:
05/24/2018
Universe Discovery Guides
Read the Fine Print
Rating
0.0 stars

These guides showcase education and public outreach resources from across more than 20 NASA astrophysics missions and programs. The twelve guides - one for each month - contain a science topic, an interpretive story, a sky object to view with finding charts, hands-on activities, and connections to NASA science. The guides are modular, so that educators can use the portions that are the most useful for their audiences/events. Following is the theme for each month: January - Betelgeuse, February - Orion Nebula, March - Pleiades, April - Pollux; May - Hubble Deep Field, June - Hercules Cluster, July - Ring Nebula & Veil Nebula, August - The Search for Habitable Worlds, September - Milky Way Galaxy, October - Upsilon Andromedae, November - Andromeda Galaxy, and December - Crab Nebula.

Subject:
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
10/05/2018
University Physics Volume 1
Unrestricted Use
CC BY
Rating
0.0 stars

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.

Subject:
Physics
Science
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
Alice Kolakowska
Bill Moebs
Daniel Bowman
David Anderson
David Smith
Dedra Demaree
Edward S. Ginsberg
Gerald Friedman
Joseph Trout
Kenneth Podolak
Kevin Wheelock
Lee LaRue
Lev Gasparov
Mark Lattery
Patrick Motl
Richard Ludlow
Samuel J. Ling
Takashi Sato
Tao Pang
Date Added:
08/03/2016
University Physics Volume 2
Unrestricted Use
CC BY
Rating
0.0 stars

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result.

Subject:
Physics
Science
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax College
Author:
Jeff Sanny
Samuel J. Ling
William Moebs
Date Added:
10/02/2018
Up, Up and Away! - Airplanes
Read the Fine Print
Educational Use
Rating
0.0 stars

The airplanes unit begins with a lesson on how airplanes create lift, which involves a discussion of air pressure and how wings use Bernoulli's principle to change air pressure. Next, students explore the other three forces acting on airplanes thrust, weight and drag. Following these lessons, students learn how airplanes are controlled and use paper airplanes to demonstrate these principles. The final lessons addresses societal and technological impacts that airplanes have had on our world. Students learn about different kinds of airplanes and then design and build their own balsa wood airplanes based on what they have learned.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Using Mathematical Models to Investigate Planetary Habitability: Activity B Making a Simple Mathematical Mode
Read the Fine Print
Rating
0.0 stars

In this activity, students build a simple computer model to determine the black body surface temperature of planets in our solar system: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto. Experiments altering the luminosity and distance to the light source will allow students to determine the energy reaching the object and its black body temperature. The activity builds on student outcomes from activity A, "Finding a Mathematical Description of a Physical Relationship." It also supports inquiry into a real-world problem, the effect of urban heat islands and deforestation on climate. Includes a teacher's guide, student worksheets, and an Excel tutorial. This is Activity B of module 3, titled "Using Mathematic Models to Investigate Planetary Habitability," of the resource, Earth Climate Course: What Determines a Planet's Climate? The course aims to help students to develop an understanding of our environment as a system of human and natural processes that result in changes that occur over various space and time scales.

Subject:
Agriculture Studies
Math
Physics
Science
Material Type:
Lesson
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
10/05/2018
Using Mathematical Models to Investigate Planetary Habitability: Activity C The Role of Actual Data in Mathematical Models
Read the Fine Print
Rating
0.0 stars

Students explore how mathematical descriptions of the physical environment can be fine-tuned through testing using data. In this activity, student teams obtain satellite data measuring the Earth's albedo, and then input this data into a spreadsheet-based radiation balance model, GEEBITT. They validate their results against published the published albedo value of the Earth, and conduct similar comparisons Mercury, Venus and Mars. The resource includes an Excel spreadsheet tutorial, an investigation, student data sheets and a teacher's guide. Students apply their understanding to the real life problem of urban heat islands and deforestation. The activity links builds on student outcomes from activities A and B: "Finding a Mathematical Description of a Physical Relationship," and "Making a Simple Mathematical Model." This is Activity C in module 3, Using Mathematical Models to Investigate Planetary Habitability, of the resource, Earth Climate Course: What Determines a Planet's Climate? The course aims to help students to develop an understanding of our environment as a system of human and natural processes that result in changes that occur over various space and time scales.

Subject:
Agriculture Studies
Math
Physics
Science
Material Type:
Lesson
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
10/05/2018
Using Spectral Data to Explore Saturn & Titan
Read the Fine Print
Rating
0.0 stars

This is a lesson about elemental spectra. Learners will compare known elemental spectra with spectra of Titan and Saturn‰Ûªs rings from a spectrometer aboard the NASA Cassini spacecraft. They identify the elements visible in the planetary and lunar spectra. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System.

Subject:
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
10/05/2018
Using a Fancy Spectrograph
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use the spectrograph from the "Building a Fancy Spectrograph" activity to gather data about different light sources. Using the data, they make comparisons between the light sources and make conjectures about the composition of these sources.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Gill
Date Added:
10/14/2015
Vectors from A to B
Read the Fine Print
Rating
0.0 stars

This is an activity about vectors and velocity. It outlines the addition and subtraction of vectors, and introduces the application of trigonometry to describing vectors. The resource is designed to support student analysis of THEMIS (Time History of Events and Macroscale Interactions during Substorms) Magnetometer line-plot data. Learners will complete worksheets consisting of problem sets that allow them to work with vector data in magnetic fields. This is activity 15 from Exploring Magnetism: Earth's Magnetic Personality.

Subject:
Math
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
10/05/2018
Vertical Height of the Atmosphere
Read the Fine Print
Rating
0.0 stars

This is a lesson about the vertical dimension of the atmosphere and includes four activities. Activity 1 Introduces concepts related to distance, including length and height and units of measurement. Students are asked to make comparisons of distances. In activity 2, students learn about the vertical profile of the atmosphere. They work with a graph and plot the heights of objects and the layers of the atmosphere: troposphere, stratosphere, mesosphere, thermosphere, and exosphere. In activity 3, students learn about other forms of visual displays using satellite imagery. They compare images of the same weather feature, a hurricane, using two different images from MODIS and CALIPSO. One image is looking down on the hurricane from space, the other looks through the hurricane to display a profile of the hurricane. Activity 4 reinforces the concept of the vertical nature of the atmosphere. Students will take a CALIPSO satellite image that shows a profile of the atmosphere and use this information to plot mountains and clouds on their own graph of the atmosphere. The recommended order for the activities is to complete the first two activities on day one, and the second two activities on day two. Each day will require approximately 1 to 1.5 hours.

Subject:
Math
Physics
Science
Material Type:
Diagram/Illustration
Lesson
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
10/05/2018
Viscoelasticity
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concept of viscoelasticity and some of the material behaviors of viscoelastic materials, including strain rate dependence, stress relaxation, creep, hysteresis and preconditioning. Viscoelastic material behavior is compared to elastic solids and viscous fluids. Students learn about materials that have viscoelastic behavior along with the importance of engineers understanding viscoelasticity. To best engage the students, conduct the first half of the associated Creepy Silly Putty activity before conducting this lesson.

Subject:
Physics
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandi N. Briggs
Marissa H. Forbes
Date Added:
09/18/2014
Viscosity: The Flow of Milk
Read the Fine Print
Educational Use
Rating
0.0 stars

Students study the physical properties of different fluids and investigate the relationship between the viscosities of liquid and how fast they flow through a confined area. Student groups conduct a brief experiment in which they quantify the flow rate to understand how it relates to a fluid's viscosity and ultimately chemical composition. They explore these properties in milk and cream, which are common fluids whose properties (and even taste!) differ based on fat content. They examine control samples and unknown samples, which they must identify based on how fast they flow. To identify the unknowns requires an understanding of the concept of viscosity. For example, heavy cream flows at a slower rate than skim milk. Ultimately, students gain an understanding of the concept of viscosity and its effect on flow rate.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jasmin Hume
Jennifer Haghpanah
Yeri Park
Date Added:
09/18/2014
Viscous Fluids
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the similarities and differences in the behaviors of elastic solids and viscous fluids. Several types of fluid behaviors are described Bingham plastic, Newtonian, shear thinning and shear thickening along with their respective shear stress vs. rate of shearing strain diagrams. In addition, fluid material properties such as viscosity are introduced, along with the methods that engineers use to determine those physical properties.

Subject:
Physics
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandi N. Briggs
Marissa H. Forbes
Michael A. Soltys
Date Added:
09/18/2014
Visible Light and the Electromagnetic Spectrum
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, the electromagnetic spectrum is explained and students learn that visible light makes up only a portion of this wide spectrum. Students also learn that engineers use electromagnetic waves for many different applications.

Subject:
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Frank Burkholder
Janet Yowell
Luke Simmons
Date Added:
09/18/2014