Updating search results...

Search Resources

8 Results

View
Selected filters:
  • standard-deviation
Measurement Certainty: How Certain Are You?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the statistical analysis of measurements and error propagation, reviewing concepts of precision, accuracy and error types. This is done through calculations related to the concept of density. Students work in teams to each measure the dimensions and mass of five identical cubes, compile the measurements into small data sets, calculate statistics including the mean and standard deviation of these measurements, and use the mean values of the measurements to calculate density of the cubes. Then they use this calculated density to determine the mass of a new object made of the same material. This is done by measuring the appropriate dimensions of the new object, calculating its volume, and then calculating its mass using the density value. Next, the mass of the new object is measured by each student group and the standard deviation of the measurements is calculated. Finally, students determine the accuracy of the calculated mass by comparing it to the measured mass, determining whether the difference in the measurements is more or less than the standard deviation.

Subject:
Math
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ralph Cox
Date Added:
10/14/2015
Open Access Assets for Mathematics Foundations 20
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

The following file contains the assets (or resources) to accompany the Sask DLC Mathematics Foundations 20. Please note that this is not the content of the course, but the assets used to support and deliver it. The files are organized in a zipped folder. You can download it and extract the files. Links are also provided to other materials like videos and other suggested resources. 

Subject:
Math
Material Type:
Activity/Lab
Lesson
Open Access Asset
Unit of Study
Author:
Sask DLC
Date Added:
10/04/2023
Statistical Analysis of Methods to Repair Cracked Steel
Read the Fine Print
Educational Use
Rating
0.0 stars

Students apply pre-requisite statistics knowledge and concepts learned in an associated lesson to a real-world state-of-the-art research problem that asks them to quantitatively analyze the effectiveness of different cracked steel repair methods. As if they are civil engineers, students statistically analyze and compare 12 sets of experimental data from seven research centers around the world using measurements of central tendency, five-number summaries, box-and-whisker plots and bar graphs. The data consists of the results from carbon-fiber-reinforced polymer patched and unpatched cracked steel specimens tested under the same stress conditions. Based on their findings, students determine the most effective cracked steel repair method, create a report, and present their results, conclusions and recommended methods to the class as if they were presenting to the mayor and city council. This activity and its associated lesson are suitable for use during the last six weeks of the AP Statistics course; see the topics and timing note for details.

Subject:
Math
Physical Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Botong Zheng
Miguel R. Ramirez
Mina Dawood
Date Added:
05/07/2018
Statistics: Margin of Error 1
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This 15-minute video lesson looks at the margin of error--finding the 95% confidence interval for the proportion of a population voting for a candidate .[Statistics playlist: Lesson 43 of 85]

Subject:
Math
Material Type:
Activity/Lab
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Salman Khan
Date Added:
02/20/2011
Statistics: Margin of Error 2
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

This 10-minute video lesson continues the discussion of margin of error--finding the 95% confidence interval for the proportion of a population voting for a candidate. [Statistics playlist: Lesson 44 of 85]

Subject:
Math
Material Type:
Activity/Lab
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Salman Khan
Date Added:
02/20/2011
Understanding the Air through Data Analysis
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build on their existing air quality knowledge and a description of a data set to each develop a hypothesis around how and why air pollutants vary on a daily and seasonal basis. Then they are guided by a worksheet through an Excel-based analysis of the data. This includes entering formulas to calculate statistics and creating plots of the data. As students complete each phase of the analysis, reflection questions guide their understanding of what new information the analysis reveals. At activity end, students evaluate their original hypotheses and “put all of the pieces together.” The activity includes one carbon dioxide worksheet/data set and one ozone worksheet/data set; providing students and/or instructors with a content option. The activity also serves as a good standalone introduction to using Excel.

Subject:
Environmental Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ashley Collier
Ben Graves
Daniel Knight
Drew Meyers
Eric Ambos
Eric Lee
Erik Hotaling
Hanadi Adel Salamah
Joanna Gordon
Katya Hafich
Michael Hannigan
Nicholas VanderKolk
Olivia Cecil
Victoria Danner
Date Added:
05/07/2018