Students begin working on the grand challenge of the unit by thinking …
Students begin working on the grand challenge of the unit by thinking about the nature of metals and quick, cost-effective means of separating different metals, especially steel. They arrive at the idea, with the help of input from relevant sources, to use magnets, but first they must determine if the magnets can indeed isolate only the steel.
Students explore the basic magnetic properties of different substances, particularly aluminum and …
Students explore the basic magnetic properties of different substances, particularly aluminum and steel. There is a common misconception that magnets attract all metals, largely due to the ubiquity of steel in metal products. The activity provides students the chance to predict, whether or not a magnet will attract specific items and then test their predictions. Ultimately, students should arrive at the conclusion that iron (and nickel if available) is the only magnetic metal.
Explore the interactions between a compass and bar magnet. Discover how you …
Explore the interactions between a compass and bar magnet. Discover how you can use a battery and wire to make a magnet! Can you make it a stronger magnet? Can you make the magnetic field reverse?
Welcome to Make Stuff Move coding lessons. This first lesson is going …
Welcome to Make Stuff Move coding lessons. This first lesson is going to show you how to set the colour and brightness of the pixel and turn it on, on our Make Stuff Move animate shield.
This is an activity about 3-D imagery. Learners can follow the instructions …
This is an activity about 3-D imagery. Learners can follow the instructions to create their own 3-D images using a digital camera, photo editing software, and red-blue 3-D glasses.
This lesson will discuss the details for a possible future manned mission …
This lesson will discuss the details for a possible future manned mission to Mars. The human risks are discussed and evaluated to minimize danger to astronauts. A specialized launch schedule is provided and the different professions of the crew are discussed. Once on the surface, the crew's activities and living area will be covered, as well as how they will make enough fuel to make it off the Red Planet and return home.
This is an activity about magnetism. Using bar magnets, classroom materials, and …
This is an activity about magnetism. Using bar magnets, classroom materials, and a compass, learners will explore how bar magnets interact with one another and with other materials, use a compass to find the direction north, and use various materials to make magnetic field lines visible around a bar magnet. This is an activity in a larger poster resource, entitled The Sun Like It's Never Been Seen Before: In 3D.
This is an activity about bar magnets and their invisible magnetic fields. …
This is an activity about bar magnets and their invisible magnetic fields. Learners will experiment with magnets and a compass to detect and draw magnetic fields. This is Activity 1 of a larger resource, entitled Exploring the Sun. The NASA spacecraft missions represented by this material include SOHO, TRACE, STEREO, Hinode, and SDO.
This activity introduces Geographic Information Systems (GIS) and poses questions that help …
This activity introduces Geographic Information Systems (GIS) and poses questions that help students answer questions that require spatial data. Students examine questions about communities and populations from local to state to national scales. Six GIS, math and mapping activities are identified in this resource. This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications.
This activity focuses on the relationship between science of looking for life …
This activity focuses on the relationship between science of looking for life and the tools, on vehicles such as the Mars Rover, that make it possible. Learners will create their own models of a Mars rover. They determine what tools would be necessary to help them better understand Mars (and something about life on Mars/its habitability). Then they work in teams to complete a design challenge where they incorporate these elements into their models, which must successfully complete a task. Teams may also work together to create a large-scale, lobby-sized version that may be put on display in the library to engage their community. The activity also includes specific tips for effectively engaging girls in STEM. This is activity 6 in Explore: Life on Mars? that was developed specifically for use in libraries.
This is a lesson about determining planetary composition. Learners will use a …
This is a lesson about determining planetary composition. Learners will use a reflectometer to determine which minerals are present (from a set of knowns) in a sample of Mars soil simulant. Requires the use of ALTA II spectrometers (which may be borrowed from the Lunar and Planetary Institute or purchased online) and Mars soil simulant. The activity is part of Project Spectra, a science and engineering program for middle-high school students, focusing on how light is used to explore the Solar System.
A realistic mass and spring laboratory. Hang masses from springs and adjust …
A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energy for each spring.
Students investigate the materials properties such as acoustical absorptivity, light reflectivity, thermal …
Students investigate the materials properties such as acoustical absorptivity, light reflectivity, thermal conductivity, hardness, and water resistance of various materials. They use sound, light and temperature sensors to collect data on various materials. They practice making design decisions about what materials would be best to use for specific purposes and projects, such as designing houses in certain environments to meet client requirements. After testing, they use the provided/tested materials to design and build model houses to meet client specifications.
Learn about position, velocity, and acceleration in the "Arena of Pain". Use …
Learn about position, velocity, and acceleration in the "Arena of Pain". Use the green arrow to move the ball. Add more walls to the arena to make the game more difficult. Try to make a goal as fast as you can.
Students experience data collection, analysis and inquiry in this LEGO® MINDSTORMS® NXT …
Students experience data collection, analysis and inquiry in this LEGO® MINDSTORMS® NXT -based activity. They measure the position of an oscillating platform using a ultrasonic sensor and perform statistical analysis to determine the mean, mode, median, percent difference and percent error for the collected data.
This is a set of three, one-page problems about the size and …
This is a set of three, one-page problems about the size and area of solar panels used to generate power. Learners will calculate area fractions to compare the sizes and distances of Jupiter's moons. Options are presented so that students may learn about the Juno mission through a NASA press release or about how solar energy is used by various NASA satellites and technology by viewing a NASA eClips video [3 min.]. This activity is part of the Space Math multi-media modules that integrate NASA press releases, NASA archival video, and mathematics problems targeted at specific math standards commonly encountered in middle school.
This is an activity about coronal mass ejections. Learners will calculate the …
This is an activity about coronal mass ejections. Learners will calculate the velocity and acceleration of a coronal mass ejection, or CME, based on its position in a series of images from the Large-Angle Spectrometric Coronograph (LASCO) instrument on NASA's Solar and Heliospheric Observatory (SOHO) spacecraft. This is Activity 2 of a larger resource, Exploring the Sun. The NASA spacecraft missions represented by this material include SOHO, TRACE, STEREO, Hinode, and SDO.
Through investigating the nature, sources and level of noise produced in their …
Through investigating the nature, sources and level of noise produced in their environment, students are introduced to the concept of noise pollution. They learn about the undesirable and disturbing effects of noise and the resulting consequences on people's health, as well as on the health of the environment. They use a sound level meter that consists of a sound sensor attached to the LEGO® NXT Intelligent Brick to record the noise level emitted by various sources. They are introduced to engineering concepts such as sensors, decibel (dB) measurements, and sound pressure used to measure the noise level. Students are introduced to impairments resulting from noise exposure such as speech interference, hearing loss, sleep disruption and reduced productivity. They identify potential noise pollution sources, and based on recorded data, they classify these sources into levels of annoyance. Students also explore the technologies designed by engineers to protect against the harmful effects of noise pollution.
Students learn first-hand the relationship between force, area and pressure. They use …
Students learn first-hand the relationship between force, area and pressure. They use a force sensor built from a LEGO® MINDSTORMS® NXT kit to measure the force required to break through a paper napkin. An interchangeable top at the end of the force sensor enables testing of different-sized areas upon which to apply pressure. Measuring the force, and knowing the area, students compute the pressure. This leads to a concluding discussion on how these concepts are found and used in engineering and nature.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.