Students conduct a simple experiment to see how the water level changes …
Students conduct a simple experiment to see how the water level changes in a beaker when a lump of clay sinks in the water and when the same lump of clay is shaped into a bowl that floats in the water. They notice that the floating clay displaces more water than the sinking clay does, perhaps a surprising result. Then they determine the mass of water that is displaced when the clay floats in the water. A comparison of this mass to the mass of the clay itself reveals that they are approximately the same.
Students bury various pieces of trash in a plotted area of land …
Students bury various pieces of trash in a plotted area of land outside. After two to three months, they uncover the trash to investigate what types of materials biodegrade in soil.
8th grade student will apply Newton’s Laws to design, test and evaluate …
8th grade student will apply Newton’s Laws to design, test and evaluate materials to create the most protective helmet for an activity of their choice. Students will use force sensors and Vernier software to analyze the force reduction for their helmets. The culmination of this project is for students to write and present a sales pitch to promote their helmet to their peers at an annual "conference."
CK-12 offers a flexible and engaging platform with interactive lessons, practice exercises, …
CK-12 offers a flexible and engaging platform with interactive lessons, practice exercises, and multimedia content tailored to different learning styles. The Flexi feature allows students to customize their learning experience, focusing on areas where they need support or want to explore further. This adaptability helps students take control of their education and succeed at their own pace.
This is an assessment activity for the The Cosmic Ray Telescope for …
This is an assessment activity for the The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) educational kit. Learners will make a poster that explains possible origins of cosmic rays, how they affect people, and what protects us here on Earth. Alternately, they will make a poster describing CRaTER‰Ûªs goal and how it works.
This lab demonstrates Ohm's law as students set up simple circuits each …
This lab demonstrates Ohm's law as students set up simple circuits each composed of a battery, lamp and resistor. Students calculate the current flowing through the circuits they create by solving linear equations. After solving for the current, I, for each set resistance value, students plot the three points on a Cartesian plane and note the line that is formed. They also see the direct correlation between the amount of current flowing through the lamp and its brightness.
This lesson introduces students to the concept of air pressure. Students will …
This lesson introduces students to the concept of air pressure. Students will explore how air pressure creates force on an object. They will study the relationship between air pressure and the velocity of moving air.
Students are presented with a short lesson on the difference between cohesive …
Students are presented with a short lesson on the difference between cohesive forces (the forces that hold water molecules together and create surface tension) and adhesive forces (the forces that causes water to "stick" to solid surfaces. The interaction between cohesive forces and adhesive forces causes the well-known capillary action. Students are also introduced to examples of capillary action found in nature and in our day-to-day lives.
In this self-paced tutorial, learners explore the personal choices students make every …
In this self-paced tutorial, learners explore the personal choices students make every day as resource consumers, and how those decisions contribute to the climate health of our planet. Multimedia educational resources such as video clips, digital interactive explorations and a quiz are included. This is the fifth of ten self-paced professional development modules providing opportunities for teachers to learn about climate change through first-hand data exploration. A carbon consumption calculator designed for kids to be used in the classroom and glossary links to vocabulary are included.
Students observe Pascal's law, Archimedes' principle and the ideal gas law as …
Students observe Pascal's law, Archimedes' principle and the ideal gas law as a Cartesian diver moves within a closed system. The Cartesian diver is neutrally buoyant and begins to sink when an external pressure is applied to the closed system. A basic explanation and proof of this process is provided in this activity, and supplementary ideas for more extensive demonstrations and independent group activities are presented.
This is a lesson about light in the outer solar system. Learners …
This is a lesson about light in the outer solar system. Learners will demonstrate the effect of the inverse square law of illumination with distance and connect this to the functioning of solar panels at Saturn. Requires a silicon solar cell (available at an electronics parts store for a few dollars) and a multimeter.
Students observe the relationship between the angle of a catapult (a force …
Students observe the relationship between the angle of a catapult (a force measurement) and the flight of a cotton ball. They learn how Newton's second law of motion works by seeing directly that F = ma. When they pull the metal "arm" back further, thus applying a greater force to the cotton ball, it causes the cotton ball to travel faster and farther. Students also learn that objects of greater mass require more force to result in the same distance traveled by a lighter object.
This interactive, online activity introduces students to the electromagnetic spectrum. Students view …
This interactive, online activity introduces students to the electromagnetic spectrum. Students view the electromagnetic spectrum in its entirety and become familiar with the characteristics of waves. Images of the sun in different wavelengths of light are included to illustrate the concept that celestial objects can emit light in regions of the electromagnetic spectrum that our eyes cannot see. Upon completion of this activity, students will be familiar with the basic properties of waves and the electromagnetic spectrum. Student may work independently or in small groups to complete this activity. Detailed teacher pages, identified as Teaching Tips on the title page of the activity, provide science background information, lesson plan ideas, related resources, and alignment with national education standards. This activity is part of the online exploration "Star Light, Star Bright" that is available on the Amazing Space website.
Student groups compete to design a process that removes the most iron …
Student groups compete to design a process that removes the most iron from fortified cereal. Students experiment with different materials using what they know about iron, magnets and forces to design the best process for removing iron from the cereal samples.
This is an activity about image comparison. Learners will analyze and compare …
This is an activity about image comparison. Learners will analyze and compare two sets of images of the Sun taken by instruments on the Solar Dynamics Observatory spacecraft. With Set 1, they will observe the Sun in both a highly active and a minimally active state, and be able to detect active regions and loops on the Sun by comparing the two images. With Set 2, they will identify areas of high magnetic activity on a magnetogram image and recognize that these areas correspond to highly active regions on the Sun.
This lesson begins with an activity in which students induce EMF in …
This lesson begins with an activity in which students induce EMF in a coil of wire using magnetic fields. Then, demonstrations on Eddy currents show how a magnetic field can slow magnets just as Eddy currents are used to slow large trains. There is then a demonstration in which a loop "jumps" because of a changing magnetic field. Finally, formal lecture reviews the cross product with respect to magnetic force and introduces magnetic flux, Faraday's law of Induction, Lenz's Law, Eddy currents, motional EMF and Induced EMF.
This lesson introduces the concepts of wavelength and amplitude in transverse waves. …
This lesson introduces the concepts of wavelength and amplitude in transverse waves. In the associated activity, students will use ropes and their bodies to investigate different wavelengths and amplitudes.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.