Updating search results...

Search Resources

17 Results

View
Selected filters:
  • concentration
Acid-Base Solutions
Unrestricted Use
CC BY
Rating
0.0 stars

How do strong and weak acids differ? Use lab tools on your computer to find out! Dip the paper or the probe into solution to measure the pH, or put in the electrodes to measure the conductivity. Then see how concentration and strength affect pH. Can a weak acid solution have the same pH as a strong acid solution?

Subject:
Chemistry
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Kathy Perkins
Kelly Lancaster
Patricia Loeblein
Robert Parson
Date Added:
09/01/2010
Acid-Base Solutions
Read the Fine Print
Rating
0.0 stars

How do strong and weak acids differ? Use lab tools on your computer to find out! Dip the paper or the probe into solution to measure the pH, or put in the electrodes to measure the conductivity. Then see how concentration and strength affect pH. Can a weak acid solution have the same pH as a strong acid solution?

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Kathy Perkins
Kelly Lancaster
Patricia Loeblein
Robert Parson
Date Added:
09/01/2010
Beer's Law Lab
Unrestricted Use
CC BY
Rating
0.0 stars

The PhET project at the University of Colorado creates "fun, interactive, research-based simulations of physical phenomena." This particular one deals with Beer's Law. "The thicker the glass, the darker the brew, the less the light that passes through." Make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer! The simulation is also paired with a teachers' guide and related resources from PhET. The simulation is also available in multiple languages.

Subject:
Chemistry
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Emily B. Moore
Julia Chamberlain
Kathy Perkins
Kelly Lancaster
Date Added:
05/14/2012
Beer's Law Lab
Read the Fine Print
Rating
0.0 stars

The PhET project at the University of Colorado creates "fun, interactive, research-based simulations of physical phenomena." This particular one deals with Beer's Law. "The thicker the glass, the darker the brew, the less the light that passes through." Make colorful concentrated and dilute solutions and explore how much light they absorb and transmit using a virtual spectrophotometer! The simulation is also paired with a teachers' guide and related resources from PhET. The simulation is also available in multiple languages.

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Emily B. Moore
Julia Chamberlain
Kathy Perkins
Kelly Lancaster
Date Added:
05/14/2012
Chemistry 30
Rating
0.0 stars

This collection of web resources contains materials for the core units of the Saskatchewan Evergreen Curriculum for Chemistry 30. Links to each unit are found in the gray navigation bar near the top of each page.

*student materials
*teacher resources
*other items

Subject:
Chemistry
Science
Material Type:
Activity/Lab
Lesson
Author:
Prairie South Schools
Peggy Lawson
Date Added:
12/01/2023
Chemistry 30 Unit 2 Files
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

2.1 Solubility and Miscibility
2.2 Concentration
2.3 Dilution, Standard Solution, and Ion Concentrations
2.4 Solubility Curves and Tables
2.5 Precipitate Reactions
2.6 Selective Precipitation
Unit 2 Exam

Subject:
Chemistry
Science
Material Type:
Activity/Lab
Reading
Unit of Study
Date Added:
10/17/2018
Concentrate This! Sugar or Salt...
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate the property dependence between concentrations and boiling point. In section 1, students first investigate the boiling point of various liquid solutions. In section 2, they analyze data collected by the entire class to generate two boiling point curves, one for salt solutions and one for sugar solutions. Finally, in section 3, students use the data they have analyzed to determine how to create a solution that has a particular boiling point and is a cost-effective design.

Subject:
Chemistry
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Herring
Date Added:
09/18/2014
Concentration
Read the Fine Print
Rating
0.0 stars

Watch your solution change color as you mix chemicals with water. Then check molarity with the concentration meter. What are all the ways you can change the concentration of your solution? Switch solutes to compare different chemicals and find out how concentrated you can go before you hit saturation!

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Chris Malley
Emily B. Moore
Julia Chamberlain
Kathy Perkins
Kelly Lancaster
Date Added:
03/09/2012
Determining Concentration
Read the Fine Print
Educational Use
Rating
0.0 stars

Students quantify the percent of light reflected from solutions containing varying concentrations of red dye using LEGO© MINDSTORMS© NXT bricks and light sensors. They begin by analyzing a set of standard solutions with known concentrations of food coloring, and plot data to graphically determine the relationship between percent reflected light and dye concentration. Then they identify dye concentrations for two unknown solution samples based on how much light they reflect. Students gain an understanding of light scattering applications and how to determine properties of unknown samples based on a set of standard samples.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jasmin Hume
Date Added:
09/18/2014
‪Laboratoire Loi de Beer-Lambert‬- (Simulation PhET)
Unrestricted Use
CC BY
Rating
0.0 stars

Une série de simulations provenant de l’Université de Colorado à Boulder pour les 9e – 12e au sujet des sciences. Cette simulation démontre le processus du Laboratoire Loi de Beer-Lambert.

Le projet PhET à l'Université du Colorado crée des "simulations amusantes, interactives et basées sur la recherche des phénomènes physiques". Celle-ci en particulier aborde la loi de Beer. "Plus le verre est épais, plus la bière est foncée, moins la lumière passe à travers." Créez des solutions colorées concentrées et diluées et explorez la quantité de lumière qu'elles absorbent et transmettent à l'aide d'un spectrophotomètre virtuel ! La simulation est également accompagnée d'un guide pour les enseignants et de ressources connexes de PhET.

Subject:
Chemistry
Science
Material Type:
Simulation
Author:
Emily B. Moore
Julia Chamberlain
Kathy Perkins
Kelly Lancaster
University of Colorado Boulder
Chris Malley
Date Added:
01/09/2024
Mix It Up
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson plan introduces the properties of mixtures and solutions. A class demonstration gives the students the opportunity to compare and contrast the physical characteristics of a few simple mixtures and solutions. Students discuss the separation of mixtures and solutions back into their original components as well as different engineering applications of mixtures and solutions.

Subject:
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Daria Kotys-Schwartz
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014
Obi-Wan Adobe: Engineering for Strength
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct an experiment to determine how varying the composition of a construction material affects its strength. They make several adobe bricks with differing percentages of sand, soil, fibrous material and water. They test the bricks for strength by dropping them onto a concrete surface from progressively greater heights. Students graph the experiment results and use what they learn to design their own special mix that maximizes the bricks' strength. During the course of the experiment, students learn about variables (independent, dependent, control) and the steps of the engineering design process.

Subject:
Design Studies
Practical & Applied Arts
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jacob Crosby
Malinda Schaefer Zarske
Stephanie Rivale
Date Added:
09/18/2014
Physical Science 20 Notebook Files
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

1.1 Review of Nomenclature
1.2 Introduction to Chemical Reactions
1.3 Types of Reactions
1.4 Ionic Equations
1.5 The Mole
1.7 Concentration
1.8 Mole to Mole Stoichiometry
1.9 Mass to Mass Stoichiometry
1.10 Gas Stoichiometry
1.11 Percent Yield

Subject:
Physical Science
Science
Material Type:
Activity/Lab
Date Added:
10/18/2018
Reactions & Rates
Read the Fine Print
Rating
0.0 stars

Explore what makes a reaction happen by colliding atoms and molecules. Design experiments with different reactions, concentrations, and temperatures. When are reactions reversible? What affects the rate of a reaction?

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Linda Koch
Mindy Gratny
Ron LeMaster
Trish Loeblein
Date Added:
11/15/2007
The Search for Surfactants: What Is the Best Soap?
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams are challenged to evaluate the design of several liquid soaps to answer the question, “Which soap is the best?” Through two simple teacher class demonstrations and the activity investigation, students learn about surface tension and how it is measured, the properties of surfactants (soaps), and how surfactants change the surface properties of liquids. As they evaluate the engineering design of real-world products (different liquid dish washing soap brands), students see the range of design constraints such as cost, reliability, effectiveness and environmental impact. By investigating the critical micelle concentration of various soaps, students determine which requires less volume to be an effective cleaning agent, factors related to both the cost and environmental impact of the surfactant. By investigating the minimum surface tension of the soap, students determine which dissolves dirt and oil most effectively and thus cleans with the least effort. Students evaluate these competing criteria and make their own determination as to which of five liquid soaps make the “best” soap, giving their own evidence and scientific reasoning. They make the connection between gathered data and the real-world experience in using these liquid soaps.

Subject:
Math
Physical Science
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Lauchlin Blue
Shawn Richard
Date Added:
05/07/2018
Simple Coulter Counter
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build and use a very basic Coulter electric sensing zone particle counter to count an unknown number of particles in a sample of "paint" to determine if enough particles per ml of "paint" exist to meet a quality standard. In a lab experiment, student teams each build an apparatus and circuit, set up data acquisition equipment, make a salt-soap solution, test liquid flow in the apparatus, take data, and make graphs to count particles.

Subject:
Biology
Math
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chuan-Hua Chen
Date Added:
09/18/2014
‪Solutions acido-basiques‬- (Simulation PhET)
Unrestricted Use
CC BY
Rating
0.0 stars

Une série de simulations provenant de l’Université de Colorado à Boulder pour les 9e – 12e au sujet des sciences. Cette simulation démontre le processus de solutions acido-basiques.

Comment les acides forts et faibles diffèrent-ils ? Utilisez des outils de laboratoire sur votre ordinateur pour le découvrir ! Plongez le papier ou la sonde dans la solution pour mesurer le pH, ou insérez les électrodes pour mesurer la conductivité. Ensuite, observez comment la concentration et la force influent sur le pH. Une solution d'acide faible peut-elle avoir le même pH qu'une solution d'acide fort ?

Subject:
Chemistry
Science
Material Type:
Simulation
Author:
Kathy Perkins
Kelly Lancaster
Patricia Loeblein
Robert Parson
University of Colorado Boulder
Chris Malley
Date Added:
01/09/2024