Students learn the two main methods to measure earthquakes, the Richter Scale …
Students learn the two main methods to measure earthquakes, the Richter Scale and the Mercalli Scale. They make a model of a seismograph a measuring device that records an earthquake on a seismogram. Students also investigate which structural designs are most likely to survive an earthquake. And, they illustrate an informational guide to the Mercalli Scale.
If you look out your window, you'll probably notice a bunch of …
If you look out your window, you'll probably notice a bunch of things; houses, streets... hopefully a tree. But beyond that you'll see things like mountains, rivers, volcanoes... well, hopefully not a volcano. These are landforms and they come in different varieties. In this episode, Sabrina chats about how things like mountains, volcanoes, and plateaus come into being.
« Le Canada possède des formes de relief remarquables. Découvre comment la …
« Le Canada possède des formes de relief remarquables. Découvre comment la météorisation, l’érosion et la sédimentation façonnent le relief. »
*Texte, images et liens externes:
-Qu’est-ce que la météorisation mécanique? -Qu’est-ce que la météorisation chimique? -Quels autres processus géologiques altèrent les formes de relief? -Questions de compréhension, discussion et réflexion
*Matériel annexe: activités pédagogiques « Aperçu de vocabulaire » et « Toile de définition du concept » (fiches reproductibles adaptées et téléchargeables), création d'un organisateur graphique, cartes topographiques et interactives
Students learn the components of the rock cycle and how rocks can …
Students learn the components of the rock cycle and how rocks can change over time under the influence of weathering, erosion, pressure and heat. They learn about geotechnical engineering and the role these engineers play in the development of an area of land, the design and placement of new structures, and detection of natural disasters.
Students learn how volume, viscosity and slope are factors that affect the …
Students learn how volume, viscosity and slope are factors that affect the surface area that lava covers. Using clear transparency grids and liquid soap, students conduct experiments, make measurements and collect data. They also brainstorm possible solutions to lava flow problems as if they were geochemical engineers, and come to understand how the properties of lava are applicable to other liquids.
Explore how plates move on the surface of the earth. Change temperature, …
Explore how plates move on the surface of the earth. Change temperature, composition, and thickness of plates. Discover how to create new mountains, volcanoes, or oceans!
Students observe an in-classroom visual representation of a volcanic eruption. The water-powered …
Students observe an in-classroom visual representation of a volcanic eruption. The water-powered volcano demonstration is made in advance, using sand, hoses and a waterballoon, representing the main components of all volcanoes. During the activity, students observe, measure and sketch the volcano, seeing how its behavior provides engineers with indicators used to predict an eruption.
Students reinforce their understanding of rocks, the rock cycle, and geotechnical engineering …
Students reinforce their understanding of rocks, the rock cycle, and geotechnical engineering by playing a trivia game. They work in groups to prepare Jeopardy-type trivia questions (answers) and compete against each other to demonstrate their knowledge of rocks and engineering.
Students learn about the causes, composition and types of volcanoes. They begin …
Students learn about the causes, composition and types of volcanoes. They begin with an overview of the Earth's interior and how volcanoes form. Once students know about how a volcano functions, they learn how engineers predict eruptions. In a class demonstration, students watch and measure a mock volcanic eruption and observe the phases of an eruption, seeing how a volcano gets its shape and provides us with clues to predict a blast.
Students learn about the underlying factors that can contribute to Plinian eruptions …
Students learn about the underlying factors that can contribute to Plinian eruptions (which eject large amounts of pumice, gas and volcanic ash, and can result in significant death and destruction in the surrounding environment), versus more gentle, effusive eruptions. Students explore two concepts related to the explosiveness of volcanic eruptions, viscosity and the rate of degassing, by modelling the concepts with the use of simple materials. They experiment with three fluids of varying viscosities, and explore the concept of degassing as it relates to eruptions through experimentation with carbonated beverage cans. Finally, students reflect on how the scientific concepts covered in the activity connect to useful engineering applications, such as community evacuation planning and implementation, and mapping of safe living zones near volcanoes. A PowerPoint® presentation and student worksheet are provided.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.