Updating search results...

Search Resources

44 Results

View
Selected filters:
  • simulation
Aerogels in Action
Read the Fine Print
Educational Use
Rating
0.0 stars

Students experiment with a new material—aerogel. Aerogel is a synthetic (human-made) porous ultra-light (low-density) material, in which the liquid component of a gel is replaced with a gas. In this activity, student pairs use aerogel to simulate the environmental engineering application of cleaning up oil spills. In a simple and fun way, this activity incorporates density calculations, the material effects of surface area, and hydrophobic and hydrophilic properties.

Subject:
Chemistry
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Claudia K. Gunsch
Desiree L. Plata
Lauren K. Redfern
Osman Karatüm
Date Added:
10/14/2015
At the Doctor's
Read the Fine Print
Educational Use
Rating
0.0 stars

In this simulation of a doctor's office, students play the roles of physician, nurse, patients, and time-keeper, with the objective to improve the patient waiting time. They collect and graph data as part of their analysis. This serves as a hands-on example of using engineering principles and engineering design approaches (such as models and simulations) to research, analyze, test and improve processes.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Courtney Feliciani Patricio Rocha
Dayna Martinez
Tapas K. Das
Date Added:
09/18/2014
Battery-Resistor Circuit
Unrestricted Use
CC BY
Rating
0.0 stars

Look inside a resistor to see how it works. Increase the battery voltage to make more electrons flow though the resistor. Increase the resistance to block the flow of electrons. Watch the current and resistor temperature change.

Subject:
Physics
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Sam Reid
Date Added:
11/20/2008
Battery-Resistor Circuit
Read the Fine Print
Rating
0.0 stars

Look inside a resistor to see how it works. Increase the battery voltage to make more electrons flow though the resistor. Increase the resistance to block the flow of electrons. Watch the current and resistor temperature change.

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Sam Ried
Date Added:
11/20/2008
Build Your Own Insect Trap
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design and construct devices to trap insects that are present in the area around the school. The objective is to ask the right design questions and conduct the right tests to determine if the traps work .

Subject:
Earth Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Building Roller Coasters
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build their own small-scale model roller coasters using pipe insulation and marbles, and then analyze them using physics principles learned in the associated lesson. They examine conversions between kinetic and potential energy and frictional effects to design roller coasters that are completely driven by gravity. A class competition using different marbles types to represent different passenger loads determines the most innovative and successful roller coasters.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Scott Liddle
Date Added:
10/14/2015
Challenges of Laparoscopic Surgery
Read the Fine Print
Educational Use
Rating
0.0 stars

Students teams use a laparoscopic surgical trainer to perform simple laparoscopic surgery tasks (dissections, sutures) using laparoscopic tools. Just like in the operating room, where the purpose is to perform surgery carefully and quickly to minimize patient trauma, students' surgery time and mistakes are observed and recorded to quantify their performances. They learn about the engineering component of surgery.

Subject:
Health Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Benjamin S. Terry
Brandi N. Briggs
Denise W. Carlson
Stephanie Rivale
Date Added:
09/18/2014
A Chance at Monte Carlo
Read the Fine Print
Educational Use
Rating
0.0 stars

At its core, the LEGO MINDSTORMS(TM) NXT product provides a programmable microprocessor. Students use the NXT processor to simulate an experiment involving thousands of uniformly random points placed within a unit square. Using the underlying geometry of the experimental model, as well as the geometric definition of the constant π (pi), students form an empirical ratio of areas to estimate a numerical value of π. Although typically used for numerical integration of irregular shapes, in this activity, students use a Monte Carlo simulation to estimate a common but rather complex analytical form the numerical value of the most famous irrational number, π.

Subject:
Electrical & Electronics
Practical & Applied Arts
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Janet Yowell
Michael Trumpis
Date Added:
09/18/2014
Communication Systems Projects with LabVIEW
Unrestricted Use
CC BY
Rating
0.0 stars

Communication Systems Projects with LabVIEW features ten project activities in digital communication systems based on the LabVIEW graphical dataflow programming platform. Each project includes introductory material in the form of text and narrated screencast videos, specifications for low-level subVI building blocks, and step-by-step instructions to assemble application VIs to implement a variety of simulations, visualizations, and working transmitters and receivers. This textbook organizes the projects into related topics, including: (1) Simulation and Visualization of Fundamental Concepts, (2) Channel Coding and Error Control, (3) FSK Demodulation (Caller ID), and (4) Bandpass Communications over the Speaker-Air-Microphone Channel.

Subject:
Communication Studies
English Language Arts
Material Type:
Textbook
Provider:
Rice University
Provider Set:
Connexions
Author:
Ed Doering
Date Added:
10/02/2018
Curb the Epidemic!
Read the Fine Print
Educational Use
Rating
0.0 stars

Using a website simulation tool, students build on their understanding of random processes on networks to interact with the graph of a social network of individuals and simulate the spread of a disease. They decide which two individuals on the network are the best to vaccinate in an attempt to minimize the number of people infected and "curb the epidemic." Since the results are random, they run multiple simulations and compute the average number of infected individuals before analyzing the results and assessing the effectiveness of their vaccination strategies.

Subject:
Health Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Debbie Jenkinson
Garrett Jenkinson
John Goutsias
Susan Frennesson
Date Added:
09/18/2014
Curiosity Killed the App
Read the Fine Print
Educational Use
Rating
0.0 stars

Students gain experience with the software/system design process, closely related to the engineering design process, to solve a problem. First, they learn about the Mars Curiosity rover and its mission, including the difficulties that engineers must consider and overcome to operate a rover remotely. Students observe a simulation of a robot being controlled remotely. These experiences guide discussion on how the design process is applied in these scenarios. The lesson culminates in a hands-on experience with the design process as students simulate the remote control of a rover. In the associated activity, students gain further experience with the design process by creating an Android application using App Inventor to control one aspect of a remotely controlled vehicle. (Note: The lesson requires a LEGO® MINDSTORMS® Education NXT base set.)

Subject:
Computer Science
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Rich Powers
Date Added:
09/18/2014
Designing a Robotic Surgical Device
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams create laparoscopic surgical robots designed to reduce the invasiveness of diagnosing endometriosis and investigate how the disease forms and spreads. Using a synthetic abdominal cavity simulator, students test and iterate their remotely controlled, camera-toting prototype devices, which must fit through small incisions, inspect the organs and tissue for disease, obtain biopsies, and monitor via ongoing wireless image-taking. Note: This activity is the core design project for a semester-long, three-credit high school engineering course. Refer to the associated curricular unit for preparatory lessons and activities.

Subject:
Health Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Benjamin S. Terry
Brandi N. Briggs
Denise W. Carlson
Stephanie Rivale
Date Added:
09/18/2014
Digestion Simulation
Read the Fine Print
Educational Use
Rating
0.0 stars

To reinforce students' understanding of the human digestion process, the functions of several stomach and small intestine fluids are analyzed, and the concept of simulation is introduced through a short, introductory demonstration of how these fluids work. Students learn what simulation means and how it relates to the engineering process, particularly in biomedical engineering. The teacher demo requires vinegar, baking soda, water and aspirin.

Subject:
Health Science
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jacob Crosby
Malinda Schaefer Zarske
Date Added:
09/18/2014
Diseases Exposed: ESR Test in the Classroom
Read the Fine Print
Educational Use
Rating
0.0 stars

Students demonstrate the erythrocyte sedimentation rate test (ESR test) using a blood model composed of tomato juice, petroleum jelly and olive oil. They simulate different disease conditions, including rheumatoid arthritis, anemia, leukocytosis and sickle-cell anemia, by making appropriate variations in the particle as well as in the fluid matrix. Students measure the ESR for each sample blood model, correlate the ESR values with disease conditions and confirm that diseases alter blood composition and properties. During the activity, students learn that when non-coagulated blood is let to stand in a tube, the red blood cells separate and fall to the bottom of the tube, resulting in a sediment and a clear liquid called serum. The height in millimeters of the clear liquid on top of the sediment in a time period of one hour is taken as the sedimentation rate. If a disease is present, this ESR value deviates from the normal, disease-free value. Different diseases cause different ESR values because blood composition and properties, such as density and viscosity, are altered differently by different diseases. Thus, the ESR test serves as a real-world diagnostic screening test to identify indications of the presence of any diseases in people.

Subject:
Chemistry
Physical Science
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Renuka Rajasekaran
Date Added:
05/07/2018
Erosion in Rivers
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about water erosion through an experimental process in which small-scale buildings are placed along a simulated riverbank to experience a range of flooding conditions. They learn how soil conditions are important to the stability or failure of civil engineering projects and how a river's turns and bends (curvature, sinuosity) make a difference in the likelihood of erosion. They make model buildings either with a 3D printer or with LEGO® pieces and then see how their designs and riverbank placements are impacted by slow (laminar) and fast (turbulent) water flow over the soil. Students make predictions, observations and conclusions about the stability of their model houses, and develop ideas for how to mitigate damage in civil engineering projects.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eduardo Suescun
Sophia Mercurio
Date Added:
09/18/2014
Here Comes the Hurricane! Saving Lives through Logical Reasoning and Computer Science
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use a hurricane tracking map to measure the distance from a specific latitude and longitude location of the eye of a hurricane to a city. Then they use the map's scale factor to convert the distance to miles. They also apply the distance formula by creating an x-y coordinate plane on the map. Students are challenged to analyze what data might be used by computer science engineers to write code that generates hurricane tracking models. Then students analyze a MATLAB® computer code that uses the distance formula repetitively to generate a table of data that tracks a hurricane at specific time intervals. Students come to realize that using a computer program to generate the calculations (instead of by hand) is very advantageous for a dynamic situation like tracking storm movements. Their inspection of some MATLAB code helps them understand how it communicates what to do using mathematical formulas, logical instructions and repeated tasks. They also conclude that the example program is too simplistic to really be a useful tool; useful computer model tools must necessarily be much more complex.

Subject:
Environmental Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Armando Vital
Fritz Claydon
Justin Chang
K. B. Nakshatrala
Rodrigues
Stuart Long
Date Added:
09/18/2014
How Do We See Colour? from CK-12 Exploration Series
Unrestricted Use
Public Domain
Rating
0.0 stars

Use the sliders in the Rose-Colored Glasses SIM to play around with different colors for the light source, the car, and the glasses to answer these questions and learn more about the concept of light and color!

We have also created a short (2:44 min) tutorial video that goes into more detail on how to use this SIM for both you and your students.

Check out the entire collection of over 120 CK-12 Simulations at www.ck12.org/sims.

Subject:
Science
Material Type:
Activity/Lab
Simulation
Author:
CK-12
Date Added:
11/16/2018
How do Atmospheres Affect Planetary Temperatures? Activity B How do Atmospheres Produce their Effect Upon Surface Temperatures?
Read the Fine Print
Rating
0.0 stars

In this kinesthetic activity, the concept of energy budget is strengthened as students conduct three simulations using play money as units of energy, and students serve as parts of a planetary radiation balance model. Students will determine the energy budget of a planet by manipulating gas concentrations, energy inputs and outputs in the system in this lesson that supports the study of climate on Mars, Mercury, Venus and Earth. The lesson supports understanding of the real-world problem of contemporary climate change. The resource includes a teacher's guide and several student worksheets. This is the second of four activities in the lesson, How do Atmospheres affect planetary temperatures?, within Earth Climate Course: What Determines a Planet's Climate? The resource aims to help students to develop an understanding of our environment as a system of human and natural processes that result in changes that occur over various space and time scales.

Subject:
Agriculture Studies
Education
Physics
Science
Material Type:
Activity/Lab
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
10/05/2018
It's a Connected World: The Beauty of Network Science
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about complex networks and how to use graphs to represent them. They also learn that graph theory is a useful part of mathematics for studying complex networks in diverse applications of science and engineering, including neural networks in the brain, biochemical reaction networks in cells, communication networks, such as the internet, and social networks. Students are also introduced to random processes on networks. An illustrative example shows how a random process can be used to represent the spread of an infectious disease, such as the flu, on a social network of students, and demonstrates how scientists and engineers use mathematics and computers to model and simulate random processes on complex networks for the purposes of learning more about our world and creating solutions to improve our health, happiness and safety.

Subject:
Science
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Debbie Jenkinson
Garrett Jenkinson
John Goutsias
Susan Frennesson
Date Added:
09/18/2014