This collection features resources about computational thinking. It also has numerous resources to help develop computational thinking skills in your students.
Students have a discussion on the different levels of security they would …
Students have a discussion on the different levels of security they would like for personal data. Once the class has developed an understanding of the importance of privacy, they learn about the process of encrypting information by enciphering a note for a partner and deciphering the partner's note. The class concludes with a discussion about the importance of both physical and digital security.
In this lesson, students use all three types of binary representation systems …
In this lesson, students use all three types of binary representation systems (ASCII characters, binary number, and images) to decode information in a record. After seeing a series of bits and being asked to decode them, students are introduced to the idea that in order to understand binary information, they must understand both the system that is being used and the meaning of the information encoded. They then decode a record representing a pet based on a given structure.
In this lesson students design a structure to represent their perfect day …
In this lesson students design a structure to represent their perfect day using the binary representation systems they've learned in this chapter. Students will first write a short description of their perfect day and then review with a partner to identify the key pieces of information they think a computer could capture. As a class students will decide how a punch card of bytes of information will be interpreted to represent those pieces of information. Students will then use the ASCII, binary number, and image formats they have learned to represent their perfect days. Students then trade punch cards and try to decode what the other student's perfect day is like. The lesson ends with a reflection.
In this lesson, students use the problem solving process from earlier in …
In this lesson, students use the problem solving process from earlier in the course to solve a data problem. After reviewing the process, the class is presented with a decision: whether a city should build a library, pet shelter, or fire department. Students work in teams to collect information on the Internet to help them decide what should be built, then use this information build an argument that will convince the city council of their choice. They then map what they have done to the problem solving process that they have been using throughout the course, comparing the general problem solving process to its specific application to data problems.
Students start by using booleans to compare the current value of a …
Students start by using booleans to compare the current value of a sprite property with a target value, using that comparison to determine when a sprite has reached a point on the screen, grown to a given size, or otherwise reached a value using the counter pattern. After using booleans directly to investigate the values or sprite properties, students add conditional _if_ statements to write code that responds to those boolean comparisons.
Following the introduction to booleans and _if_ statements in the previous lesson, …
Following the introduction to booleans and _if_ statements in the previous lesson, students are introduced to a new block called `keyDown()` which returns a boolean and can be used in conditionals statements to move sprites around the screen. By the end of this lesson students will have written programs that take keyboard input from the user to control sprites on the screen.
In this lesson students continue to explore ways to use conditional statements …
In this lesson students continue to explore ways to use conditional statements to take user input. In addition to the simple `keyDown()` command learned yesterday, students will learn about several other keyboard input commands as well as ways to take mouse input.
In this cumulative project for Chapter 1, students plan for and develop …
In this cumulative project for Chapter 1, students plan for and develop an interactive greeting card using all of the programming techniques they've learned to this point.
After a brief review of how they used the counter pattern to …
After a brief review of how they used the counter pattern to move sprites in previous lessons, students are introduced to the properties that set velocity and rotation speed directly. As they use these new properties in different ways, they build up the skills they need to create a basic side scroller game.
Students learn about collision detection on the computer. Working in pairs, they …
Students learn about collision detection on the computer. Working in pairs, they explore how a computer could use sprite location and size properties and math to detect whether two sprites are touching. They then use the `isTouching()` block to create different effects when sprites collide, including playing sounds. Last, they use their new skills to improve the sidescroller game that they started in the last lesson.
Students learn to combine the velocity properties of sprites with the counter …
Students learn to combine the velocity properties of sprites with the counter pattern to create more complex sprite movement. In particular students will learn how to simulate gravity, make a sprite jump, and allow a sprite to float left or right. In the final levels of the Code Studio progression students combine these movements to animate and control a single sprite and build a simple game in which a character flies around and collects a coin. Students are encouraged to make their own additions to the game in the final level.
Students program their sprites to interact in new ways. After a brief …
Students program their sprites to interact in new ways. After a brief review of how they used the `isTouching` block, students brainstorm other ways that two sprites could interact. They then use `isTouching` to make one sprite push another across the screen before practicing with the four collision blocks (`collide`, `displace`, `bounce`, and `bounceOff`).
Students learn how to create functions to organize their code, make it …
Students learn how to create functions to organize their code, make it more readable, and remove repeated blocks of code. An unplugged warmup explores how directions at different levels of detail can be useful depending on context. Students learn that higher level or more abstract steps make it easier to understand and reason about steps. Afterwards students learn to create functions in Game Lab. They will use functions to remove long blocks of code from their draw loop and to replace repeated pieces of code with a single function. At the end of the lesson students use these skills to organize and add functionality to the final version of their side scroller game.
In this lesson, students are introduced to boolean values and logic, as …
In this lesson, students are introduced to boolean values and logic, as well as conditional statements. The class starts by playing a simple game of Stand Up, Sit Down in which the boolean (true/false) statements describe personal properties (hair or eye color, clothing type, age, etc). This gets students thinking about how they can frame a property with multiple potential values (such as age) with a binary question.
From there students are provided a group of objects with similar, yet varying, physical properties. With a partner they group those objects based on increasingly complex boolean statements, including compound booleans with AND and OR.
Finally we reveal Conditionals as a tool to make decisions or impact the flow of a program using boolean statements as input.
Students are asked to consider the "problems" of boredom and self expression, …
Students are asked to consider the "problems" of boredom and self expression, and to reflect on how they approach those problems in their own lives. From there, students will explore how Computer Science in general, and programming specifically, plays a role in either a specific form of entertainment or as a vehicle for self expression.
In this multi-day lesson, students use the problem solving process from Unit …
In this multi-day lesson, students use the problem solving process from Unit 1 to create a platform jumper game. They start by looking at an example of a platform jumper, then define what their games will look like. Next, they use a structured process to plan the backgrounds, variables, sprites, and functions they will need to implement their game. After writing the code for the game, students will reflect on how the game could be improved, and implement those changes.
Students will plan and build their own game using the project guide …
Students will plan and build their own game using the project guide from the previous two lessons to guide their project. Working individually or in pairs, students will first decide on the type of game they'd like to build, taking as inspiration a set of sample games. They will then complete a blank project guide where they will describe the game's behavior and scope out the variables, sprites, and functions they'll need to build. In Code Studio, a series of levels prompts them on a general sequence they can use to implement this plan. Partway through the process, students will share their projects for peer review and will incorporate feedback as they finish their game. At the end of the lesson, students will share their completed games with their classmates. This project will span multiple classes and can easily take anywhere from 3-5 class periods.
Students explore the challenges of communicating how to draw with shapes and …
Students explore the challenges of communicating how to draw with shapes and use a tool that introduces how this problem is approached in Game Lab. The warm up activity quickly demonstrates the challenges of communicating position without some shared reference point. In the main activity students explore a Game Lab tool that allows students to interactively place shapes on Game Lab's 400 by 400 grid. They then take turns instructing a partner how to draw a hidden image using this tool, accounting for many challenges students will encounter when programming in Game Lab. Students optionally create their own image to communicate before a debrief discussion.
This lesson introduces students to the process they will use to design …
This lesson introduces students to the process they will use to design games for the remainder of the unit. This process is centered around a project guide which asks students to define their sprites, variables, and functions before they begin programming their game. In this lesson students begin by playing a game on Game Lab where the code is hidden. They discuss what they think the sprites, variables, and functions would need to be to make the game. They are then given a completed project guide which shows one way to implement the game. Students are then walked through this process through a series of levels. As part of this lesson students also briefly learn to use multi-frame animations in Game Lab. At the end of the lesson students have an opportunity to make improvements to the game to make it their own.
Students are introduced to Game Lab, the programming environment for this unit, …
Students are introduced to Game Lab, the programming environment for this unit, and begin to use it to position shapes on the screen. They learn the basics of sequencing and debugging, as well as a few simple commands. At the end of the lesson, students will be able to program images like the ones they made with the drawing tool in the previous lesson.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.