An interactive applet and associated web page that describe the concept of …
An interactive applet and associated web page that describe the concept of the coordinate plane (Cartesian Plane). The applet shows the plane, its axes, origin and related controls. The user can drag a point around and see the coordinates change, and click anywhere to create new points. The origin can be dragged to emphasize or eliminate certain quadrants. The grid, axis pointers and coordinates can be turned on and off. The coordinate display can be turned off to permit class exercises and then turned back on the verify the answers. The applet can be printed as it appears on the screen to make handouts. The web page has a narrative description of the concept. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.
An interactive applet and associated web page that demonstrate the concept of …
An interactive applet and associated web page that demonstrate the concept of coplanar objects - those that lie in the same plane. The applet presents two planes. In one plane there are two rectangles that can be dragged around and which lie in the same plane always. The other is a rectangle that can be dragged but always lies in a plane orthogonal to the first. Applet can be enlarged to full screen size for use with a classroom projector. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.
Simple machines are devices with few or no moving parts that make …
Simple machines are devices with few or no moving parts that make work easier, and which people have used to provide mechanical advantage for thousands of years. Students learn about the wedge, wheel and axle, lever, inclined plane, screw and pulley in the context of the construction of a pyramid, gaining insights into tools that have been used since ancient times and are still important today. Through numerous hands-on activities, students imagine themselves as ancient engineers building a pyramid. Student teams evaluate and select a construction site, design a pyramid, perform materials calculations, test a variety of cutting wedges on different materials, design a small-scale cart/lever transport system to convey building materials, experiment with the angle of inclination and pull force on an inclined plane, see how a pulley can change the direction of force, and learn the differences between fixed, movable and combined pulleys. While learning the steps of the engineering design process, students practice teamwork, creativity and problem solving.
In this module, students explore and experience the utility of analyzing algebra …
In this module, students explore and experience the utility of analyzing algebra and geometry challenges through the framework of coordinates. The module opens with a modeling challenge, one that reoccurs throughout the lessons, to use coordinate geometry to program the motion of a robot that is bound within a certain polygonal region of the planethe room in which it sits. To set the stage for complex work in analytic geometry (computing coordinates of points of intersection of lines and line segments or the coordinates of points that divide given segments in specific length ratios, and so on), students will describe the region via systems of algebraic inequalities and work to constrain the robot motion along line segments within the region.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
In this 20-day module students explore area as an attribute of two-dimensional …
In this 20-day module students explore area as an attribute of two-dimensional figures and relate it to their prior understandings of multiplication. Students conceptualize area as the amount of two-dimensional surface that is contained within a plane figure. They come to understand that the space can be tiled with unit squares without gaps or overlaps. They make predictions and explore which rectangles cover the most area when the side lengths differ. Students progress from using square tile manipulatives to drawing their own area models and manipulate rectangular arrays to concretely demonstrate the arithmetic properties. The module culminates with students designing a simple floor plan that conforms to given area specifications.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
A web page that introduces the concepts behind coordinate geometry. Can be …
A web page that introduces the concepts behind coordinate geometry. Can be used as a reference for students to learn about the topic when away from class. Has links to other related pages that contain animated demonstrations. This resource is a component of the Math Open Reference Interactive Geometry textbook project at http://www.mathopenref.com.
Math Antics has amazing videos to explain concepts for Math. The videos …
Math Antics has amazing videos to explain concepts for Math. The videos are very clear and explicit and students love them. All of the video lessons are FREE.
There are also follow up exercises, videos and worksheets that students can use to solidify learning - but you will be required to pay $20 a year to access these. hat being said, it's super useful even without a paid account!
The videos are organized by strand, and all are free.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
En este módulo, los estudiantes exploran y experimentan la utilidad de analizar los desafíos de álgebra y geometría a través del marco de las coordenadas. El módulo se abre con un desafío de modelado, uno que vuelve a ocurrir en las lecciones, para usar la geometría de coordenadas para programar el movimiento de un robot que está vinculado dentro de una cierta región poligonal del avión en el que se encuentra. Para establecer el escenario para un trabajo complejo en geometría analítica (coordenadas de cálculo de puntos de intersección de líneas y segmentos de línea o las coordenadas de puntos que dividen segmentos dados en relaciones de longitud específicas, etc.), los estudiantes describirán la región a través de sistemas de algebraico desigualdades y trabajo para restringir el movimiento del robot a lo largo de los segmentos de línea dentro de la región.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: In this module, students explore and experience the utility of analyzing algebra and geometry challenges through the framework of coordinates. The module opens with a modeling challenge, one that reoccurs throughout the lessons, to use coordinate geometry to program the motion of a robot that is bound within a certain polygonal region of the planethe room in which it sits. To set the stage for complex work in analytic geometry (computing coordinates of points of intersection of lines and line segments or the coordinates of points that divide given segments in specific length ratios, and so on), students will describe the region via systems of algebraic inequalities and work to constrain the robot motion along line segments within the region.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
(Nota: Esta es una traducción de un recurso educativo abierto creado por …
(Nota: Esta es una traducción de un recurso educativo abierto creado por el Departamento de Educación del Estado de Nueva York (NYSED) como parte del proyecto "EngageNY" en 2013. Aunque el recurso real fue traducido por personas, la siguiente descripción se tradujo del inglés original usando Google Translate para ayudar a los usuarios potenciales a decidir si se adapta a sus necesidades y puede contener errores gramaticales o lingüísticos. La descripción original en inglés también se proporciona a continuación.)
En este módulo de 20 días, los estudiantes exploran el área como un atributo de figuras bidimensionales y lo relacionan con su comprensión previa de multiplicación. Los estudiantes conceptualizan el área como la cantidad de superficie bidimensional que está contenida dentro de una figura plana. Llegan a comprender que el espacio puede estar mortal con cuadrados unitarios sin huecos o superposiciones. Hacen predicciones y exploran qué rectángulos cubren la mayor cantidad de área cuando las longitudes laterales difieren. Los estudiantes progresan del uso de manipulaciones de baldosas cuadradas hasta dibujar sus propios modelos de área y manipular matrices rectangulares para demostrar concretamente las propiedades aritméticas. El módulo culmina con estudiantes que diseñan un plano de planta simple que se ajusta a las especificaciones de área dadas.
Encuentre el resto de los recursos matemáticos de Engageny en https://archive.org/details/engageny-mathematics.
English Description: In this 20-day module students explore area as an attribute of two-dimensional figures and relate it to their prior understandings of multiplication. Students conceptualize area as the amount of two-dimensional surface that is contained within a plane figure. They come to understand that the space can be tiled with unit squares without gaps or overlaps. They make predictions and explore which rectangles cover the most area when the side lengths differ. Students progress from using square tile manipulatives to drawing their own area models and manipulate rectangular arrays to concretely demonstrate the arithmetic properties. The module culminates with students designing a simple floor plan that conforms to given area specifications.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
The purpose of this lesson is to teach students about the three …
The purpose of this lesson is to teach students about the three dimensional Cartesian coordinate system. It is important for structural engineers to be confident graphing in 3D in order to be able to describe locations in space to fellow engineers.
Student groups use a "real" 3D coordinate system to plot points in …
Student groups use a "real" 3D coordinate system to plot points in space. Made from balsa wood or wooden dowels, the system has three axes at right angles and a plane (the XY plane) that can slide up and down the Z axis. Students are given several coordinates and asked to find these points in space. Then they find the coordinates of the eight corners of a box/cube with given dimensions.
Through a five-lesson series with five activities, students are introduced to six …
Through a five-lesson series with five activities, students are introduced to six simple machines inclined plane, wedge, screw, lever, pulley, wheel-and-axle as well as compound machines, which are combinations of two or more simple machines. Once students understand about work (work = force x distance), they become familiar with the machines' mechanical advantages, and see how they make work easier. Through an introduction to compound machines, students begin to think critically about machine inventions and their pervasive roles in our lives. After learning about Rube Goldberg contraptions absurd inventions that complete simple tasks in complicated ways they evaluate the importance and usefulness of the many machines around them. Through the hands-on activities, students draw designs for contraptions that could move a circus elephant into a rail car, create a construction site ramp design by measuring different inclined planes and calculating the ideal vs. actual mechanical advantage of each, compare the theoretical and actual mechanical advantages of different pulley systems conceived to save a whale, build and test grape catapults made with popsicle sticks and rubber bands, and follow the steps of the engineering design process to design and build Rube Goldberg machines.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.