Updating search results...

Search Resources

4975 Results

View
Selected filters:
  • Science
Biomes and Population Dynamics - Balance within Natural Systems
Read the Fine Print
Educational Use
Rating
0.0 stars

With a continued focus on the Sonoran Desert, students are introduced to the concepts of biomes, limiting factors (resources), carrying capacity and growth curves through a PowerPoint® presentation. Abiotic factors (temperature, annual precipitation, seasons, etc.) determine the biome landscape. The vegetative component, as producers, determines the types of consumers that form its various communities. Students learn how the type and quantity of available resources defines how many organisms can be supported within the community, as well as its particular resident species. Students use mathematical models of natural relationships (in this case, sigmoid and exponential growth curves) to analyze population information and build upon it. With this understanding, students are able to explain how carrying capacity is determined by the limiting factors within the community and feeding relationships. By studying these ecological relationships, students see the connection between ecological relationships of organisms and the fundamentals of engineering design, adding to their base of knowledge towards solving the grand challenge posed in this unit.

Subject:
Environmental Science
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Amber Spolarich
Wendy J. Holmgren
Date Added:
09/18/2014
Biomimicry: Natural Designs
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about biomimicry and how engineers often imitate nature in the design of innovative new products. They demonstrate their knowledge of biomimicry by practicing brainstorming and designing a new product based on what they know about animals and nature.

Subject:
Biology
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Katherine Beggs
Malinda Schaefer Zarske
Date Added:
09/26/2008
Biomimicry and Sustainable Design - Nature Is an Engineering Marvel
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concepts of biomimicry and sustainable design. Countless examples illustrate the wisdom of nature in how organisms are adapted for survival, such as in body style, physiological processes, water conservation, thermal radiation and mutualistic relationships, to assure species perpetuation. Students learn from articles and videos, building a framework of evidence substantiating the indisputable fact that organisms operate "smarter" and thus provide humans with inspiration in how to improve products, systems and cities. As students focus on applying the ecological principles of the previous lessons to the future design of our human-centered world, they also learn that often our practices are incapable of replicating the precision in which nature completes certain functions, as evidenced by our dependence on bees as pollinators of the human food supply. The message of biomimicry is one of respect: study to improve human practices and ultimately protect natural systems. This heightened appreciation helps students to grasp the value of industry and urban mimetic designs to assure protection of global resources, minimize human impact and conserve nonrenewable resources. All of these issues aid students in creating a viable guest resort in the Sonoran Desert.

Subject:
Environmental Science
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Wendy J. Holmgren
Date Added:
09/18/2014
Biorecycling: Using Nature to Make Resources from Waste
Read the Fine Print
Educational Use
Rating
0.0 stars

By studying key processes in the carbon cycle, such as photosynthesis, composting and anaerobic digestion, students learn how nature and engineers "biorecycle" carbon. Students are exposed to examples of how microbes play many roles in various systems to recycle organic materials and also learn how the carbon cycle can be used to make or release energy.

Subject:
Environmental Science
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Caryssa Joustra
Daniel Yeh
Emanuel Burch
George Dick
Herby Jean
Ivy Drexler
Jorge Calabria
Lyudmila Haralampieva
Matthew Woodham
Onur Ozcan
Robert Bair
Stephanie Quintero
Date Added:
09/18/2014
Biosensors for Food Safety
Read the Fine Print
Educational Use
Rating
0.0 stars

How can you tell if harmful bacteria are in your food or water that might make you sick? What you eat or drink can be contaminated with bacteria, viruses, parasites and toxins—pathogens that can be harmful or even fatal. Students learn which contaminants have the greatest health risks and how they enter the food supply. While food supply contaminants can be identified from cultures grown in labs, bioengineers are creating technologies to make the detection of contaminated food quicker, easier and more effective.

Subject:
Biology
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Evangelyn Alocilja
Hannah Miller
Lisa Wininger
Date Added:
05/07/2018
Biot-Savart Law
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson begins with a demonstration prompting students to consider how current generates a magnetic field and the direction of the field that is generated. Through formal lecture, students learn Biot-Savart's law in order to calculate, most simply, the magnetic field produced in the center of a circular current carrying loop. For applications, students find it is necessary to integrate the field produced over all small segments in an actual current carrying wire.

Subject:
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
Birth of a Large Iceberg in Pine Island Bay, Antarctica
Read the Fine Print
Rating
0.0 stars

This lithograph shows the break-off of a large iceberg from the Pine Island Glacier in West Antarctica. This event occurred between November 4th and 12th, 2001, and provides powerful evidence of rapid changes underway in this area of Antarctica. The three images presented were acquired by the vertical-viewing (nadir) camera of the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra spacecraft.

Subject:
Science
Material Type:
Diagram/Illustration
Provider:
NASA
Provider Set:
Earth Observatory
Date Added:
10/02/2004
Bison Rubbing Stones
Rating
0.0 stars

This Government of Manitoba article describes how glaciers helped to form bison rubbing stones. So how did these great big rocks end up in the middle of the prairie? Bison rubbine stones are what geologists call "erratics". Erratic stones are defined as rocks that are differenet compositionally from the rocks that form the surface on which they are found. Erratics were moved from their original homes by the formation of the glaciers thousands of years ago. As the ice formed it ripped chunks of stone and gravel from the earth and carried them across the landscape. Several thousand years later, the glaciers started melting. When the glacier was no longer able to carry the weight of the boulder, it was simply dropped. They were left scattered over the landscape, some the size of fieldstones, some car-sized and others as big as a house.

Subject:
Earth Science
Science
Material Type:
GAP 4
Primary Source
Author:
Government of Manitoba
Date Added:
06/20/2023
Black Hole Explorer Game
Read the Fine Print
Rating
0.0 stars

This board game challenges players (ages 10+) to build a spaceship and fly to a black hole. The game provides opportunities for understanding phenomena based on current black hole research. During the game, players will experience the dangers and excitement of a real space mission, and learn about the nature of black holes by launching scientific probes. The game can be played competitively or as a team (instructions are also provided for playing in large groups. Black Hole Explorer consists of: Game Board, Game Rules, Spacecraft Data sheets, Science Briefing Room document, Event cards (28), Probe result cards (12), Energy tokens (140). Game components are available as PDF downloads; dice and game pieces must be provided by the user. NOTE: tokens and cards need to be cut to size from letter-size cardstock.

Subject:
Math
Physics
Science
Material Type:
Game
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
10/05/2018
Blackbody Spectrum
Read the Fine Print
Rating
0.0 stars

How does the blackbody spectrum of the sun compare to visible light? Learn about the blackbody spectrum of the sun, a light bulb, an oven, and the earth. Adjust the temperature to see the wavelength and intensity of the spectrum change. View the color of the peak of the spectral curve.

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Michael Dubson
Wendy Adams
Date Added:
11/15/2007
Blackout!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students read news reports and first-person accounts to imagine what it would be like to be in a blackout in a large city. They follow news reports as if the event were unfolding in real-time and keep weblogs or journals of their experience as they imagine it, taking on different roles of people who live in the city or commute there to work. They use their journal accounts to create a play or screenplay that depicts what the August 2003 blackout was like for the people in the U.S. and Canada who experienced it. Although this activity is geared towards fifth-grade and older students, it could be easily adapted for younger students.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jane Evenson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Blast Off
Read the Fine Print
Educational Use
Rating
0.0 stars

Rockets need a lot of thrust to get into space. In this lesson, students learn how rocket thrust is generated with propellant. The two types of propellants are discussed and relation to their use on rockets is investigated. Students learn why engineers need to know the different properties of propellants.

Subject:
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Argrow
Janet Yowell
Jay Shah
Jeff White
Luke Simmons
Malinda Schaefer Zarske
Date Added:
09/18/2014
Blazing Gas
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to our Sun as they explore its composition, what is happening inside it, its relationship to our planet (our energy source), and the ways engineers help us learn about it.

Subject:
Physical Science
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Geoffrey Hill
Jessica Butterfield
Jessica Todd
Date Added:
09/18/2014
Blended Learning Unit for Exploring Our Universe
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Over the past several years that I have taught Science 9, I always assigned a major
independent project to cover the outcomes in the Exploring Our Universe unit. Since this
unit is a favorite with my students, I began to integrate some instructional pieces above and
beyond their major projects, and ended up with a loose version of a blended learning unit.
Unlike the other units in Science 9, Exploring Our Universe lends itself well to blended
learning as the content can be easily comprehended by most students without lecture-style
teaching. Instead, students are provided with a range of instructional experiences, which
include small group work, computer-based learning, individual work areas, and teacherlead
small groups. Students have a choice for most activities, which means all the outcomes
will be covered, but the depth and areas of focus will vary from student to student. All
activities are self-pacing, and will receive either a formative or summative assessment
throughout the unit. As you will see, some activities work well as for both small group work
and individual work areas. We use Pearson Saskatchewan Science 9 as a textbook for this
unit

Subject:
Science
Material Type:
Homework/Assignment
Date Added:
09/10/2018
Blood Cell Basics
Read the Fine Print
Educational Use
Rating
0.0 stars

Students will make a proportional model of blood out of red gelatin, a plastic bag, and rice. They will learn about the different components that make up blood and will investigate what happens when the arteries and veins experience buildup from cholesterol. They will then work in pairs to brainstorm ways to clean our clogged arteries.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Jessica Todd
Julie Marquez
Malinda Schaefer Zarske
Sara Born
Date Added:
10/14/2015
Blood Clots, Polymers and Strokes
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the circulatory system with an emphasis on the blood clotting process, including coagulation and the formation and degradation of polymers through their underlying atomic properties. They learn about the medical emergency of strokes the loss of brain function commonly due to blood clots including various causes and the different effects depending on the brain location, as well as blood clot removal devices designed by biomedical engineers.

Subject:
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ann McCabe
Azim Laiwalla
Carleigh Samson
Victoria Lanaghan
Date Added:
09/18/2014
Blood Pressure Basics
Read the Fine Print
Educational Use
Rating
0.0 stars

Students study how heart valves work and investigate how valves that become faulty over time can be replaced with advancements in engineering and technology. Learning about the flow of blood through the heart, students are able to fully understand how and why the heart is such a powerful organ in our bodies.

Subject:
Biology
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Date Added:
09/18/2014
Blood Spatter
Rating
0.0 stars

Blood behaves not unlike those spilled water droplets, and the speed at which the droplets travel when they strike a surface, known to analysts as a target, affects their shape. This speed, combined with angle and surface characteristics, also determines how far blood droplets skip or bounce after meeting a barrier.

Subject:
Biology
Forensic Science
Science
Material Type:
Primary Source
Reading
Author:
How Stuff Works
SHANNA FREEMAN & NICHOLAS GERBIS
Date Added:
01/16/2019