This Back-to-School Challenge encourages students (and teachers) use an Adobe multi-page template …
This Back-to-School Challenge encourages students (and teachers) use an Adobe multi-page template to create back-to-school goals. That template can then be used to create an Adobe Express video in which voiceovers are added. Then the video can be submitted to a contest where a backpack, including an iPad and Apple Pencil, Rode Video Mic, tablet holder and tripod, power bank, ring light … and more, will be given away to several lucky winners.
Part 1: This short YouTube video gives an overview of the challenge.
For a more in depth video of how to use the template, visit https://www.youtube.com/watch?v=WUYAFEkeScI
The template itself can be accessed at https://express.adobe.com/sp/design/post/urn:aaid:sc:US:2141641d-87a0-4622-b157-a46db3fdee0f
Part 2 of the challenge involves using the information collected in the Adobe Express template to transform your multi-page portfolio into a reflection video to help guide your year. Head over to https://edex.adobe.com/challenges?sdid=D4P81QZ8&mv=social&mv2=ownsoc-org for the outline of the video project.
Be sure to view the Part 2 Video Tutorial and the Printable Lesson Plan.
To enter the contest to win the great prizes, fill out and submit the following form by September 30: https://docs.google.com/forms/d/e/1FAIpQLSe-RraSiOATA9mrJ6pGZtVML4iBb10HLXCVVT8oZuip3w6zDw/viewform
Students learn more about assistive devices, specifically biomedical engineering applied to computer …
Students learn more about assistive devices, specifically biomedical engineering applied to computer engineering concepts, with an engineering challenge to create an automatic floor cleaner computer program. Following the steps of the design process, they design computer programs and test them by programming a simulated robot vacuum cleaner (a LEGO® robot) to move in designated patterns. Successful programs meet all the design requirements.
Students are introduced to the challenge question, which revolves around proving that …
Students are introduced to the challenge question, which revolves around proving that a cabinet x-ray system can produce bone mineral density images. Students work independently to generate ideas from the questions provided, then share with partners and then with the class as part of the Multiple Perspectives phase of this unit. Then, as part of the associated activity, students explore multiple websites to gather information about bone mineral density and answer worksheet questions, followed by a quiz on the material covered in the articles.
Be a change maker; design solutions. The next generation of problem-solvers need …
Be a change maker; design solutions.
The next generation of problem-solvers need more than technical skills and expertise. They need experiences that allow them to see the designed world and its impact on people, collaborate and empathize across differences, and leverage their skills to redesign the world around them to meet the needs of all people in their communities.
This website has various video challenges with accompanying PDF's for student use …
This website has various video challenges with accompanying PDF's for student use . Students are able to post their own videos of how they solved the challenge, and take a look at how others solved it as well.
Students practice the initial steps involved in an engineering design challenge. They …
Students practice the initial steps involved in an engineering design challenge. They begin by reviewing the steps of the engineering design loop and discussing the client need for the project. Next, they identify a relevant context, define the problem within their design teams, and examine the project's requirements and constraints. (Note: Conduct this activity in the context of a design project that students are working on, which could be a challenge determined by the teacher, brainstormed with the class, or the example project challenge provided [to design a prosthetic arm that can perform a mechanical function].)
Student teams are challenged to navigate a table tennis ball through a …
Student teams are challenged to navigate a table tennis ball through a timed obstacle course using only the provided unconventional “tools.” Teams act as engineers by working through the steps of the engineering design process to complete the overall task with each group member responsible to accomplish one of the obstacle course challenges. Inspired by the engineers who helped the Apollo 13 astronauts through critical problems in space, students must be innovative with the provided supplies to use them as tools to move the ball through the obstacles as swiftly as possible. Groups are encouraged to communicate with each other to share vital information. The course and tool choices are easily customizable for varied age groups and/or difficulty levels. Pre/post assessment handouts, competition rules and judging rubric are provided.
During this engineering design/build project, students investigate many different solutions to a …
During this engineering design/build project, students investigate many different solutions to a problem. Their design challenge is to find a way to get school t-shirts up into the stands during home sporting events. They follow the steps of the engineering design process to design and build a usable model, all while keeping costs under budget.
Students engage in the second design challenge of the unit, which is …
Students engage in the second design challenge of the unit, which is an extension of the maze challenge they solved in the first lesson/activity of this unit. Students extend the ideas learned in the maze challenge with a focus more on the robot design. Gears are a very important part of any machine, particularly when it has a power source such as engine or motor. Specifically, students learn how to design the gear train from the LEGO MINDSTORMS(TM) NXT servomotor to the wheel to make the LEGO taskbot go faster or slower. A PowerPoint® presentation, pre/post quizzes and a worksheet are provided.
Student teams follow the steps of the engineering design process to meet …
Student teams follow the steps of the engineering design process to meet the challenge of getting their entire class from one location on the playground to the sidewalk without touching the ground between. The class develops a well thought-out plan while following the steps of the engineering design process. Then, they test their solution by going outside and trying it out. Through the post-activity assessment, they compare their problem-solving experience to real life engineering challenges, such as creating new forms of transportation or new product invention.
Through four lessons and four hands-on associated activities, this unit provides a …
Through four lessons and four hands-on associated activities, this unit provides a way to teach the overarching concept of energy as it relates to both kinetic and potential energy. Within these topics, students are exposed to gravitational potential, spring potential, the Carnot engine, temperature scales and simple magnets. During the module, students apply these scientific concepts to solve the following engineering challenge: "The rising price of gasoline has many effects on the US economy and the environment. You have been contracted by an engineering firm to help design a physical energy storage system for a new hybrid vehicle for Nissan. How would you go about solving this problem? What information would you consider to be important to know? You will create a small prototype of your design idea and make a sales pitch to Nissan at the end of the unit." This module is built around the Legacy Cycle, a format that incorporates findings from educational research on how people best learn. This module is written for a first-year algebra-based physics class, though it could easily be modified for conceptual physics.
Students are presented with an engineering challenge: To design a sustainable guest …
Students are presented with an engineering challenge: To design a sustainable guest village within the Saguaro National Park in Arizona. Through four lessons and six associated activities, they study ecological relationships with an emphasis on the Sonoran Desert. They examine species adaptations. They come to appreciate the complexity and balance that supports the exchange of energy and matter within food webs. Then students apply what they have learned about these natural relationships to the study of biomimicry and sustainable design. They study the flight patterns of birds and relate their functional design to aeronautical engineering. A computer simulation model is also incorporated into this unit and students use this program to examine perturbations within a simple ecosystem. The solution rests within the lessons and applications of this unit.
Students learn and use the properties of light to solve the following …
Students learn and use the properties of light to solve the following challenge: "A mummified troll was discovered this summer at our school and it has generated lots of interest worldwide. The principal asked us, the technology classes, to design a security system that alerts the police if someone tries to pilfer our prized possession. How can we construct a system that allows visitors to view our artifact during the day, but invisibly protects it at night in a cost-effective way?"
Student groups are challenged to program robots with light sensors to follow …
Student groups are challenged to program robots with light sensors to follow a black line. Learning both the logic and skills behind programming robots for this challenge helps students improve their understanding of how robots "think" and widens their appreciation for the complexity involved in programming LEGO® MINDSTORMS® NXT robots to do what appears to be a simple task. They test their ideas for approaches to solve the problem and ultimately learn a (provided) working programming solution. They think of real-world applications for line-follower robots that use sensor input. A PowerPoint® presentation and pre/post quizzes are provided.
As the first engineering design challenge of the unit, students are introduced …
As the first engineering design challenge of the unit, students are introduced to the logic for solving a maze. First they observe a blindfolded student volunteer being guided through a classroom maze by the simple verbal instructions of another student. In this demonstration, the blindfolded student represents a robot and the guiding student represents programming commands. Then student groups apply that logic to program LEGO MINDSTORMS(TM) NXT robots to navigate through a maze, first with no sensors, and then with sensors. A PowerPoint® presentation, pre/post quizzes and a worksheet are provided.
Students further their understanding of the engineering design process (EDP) while being …
Students further their understanding of the engineering design process (EDP) while being introduced to assistive technology devices and biomedical engineering. They are given a fictional client statement and are tasked to follow the steps of the EDP to design and build small-scale, off-road wheelchair prototypes. As part of the EDP, students identify appropriate materials and demonstrate two methods of representing solutions to their design problem (scale drawings and simple scale models). They test the scale model off-road wheelchairs using spring scales to pull the prototypes across three different simulated off-road surfaces.
Using paper, paper clips and tape, student teams design flying/falling devices to …
Using paper, paper clips and tape, student teams design flying/falling devices to stay in the air as long as possible and land as close as possible to a given target. Student teams use the steps of the engineering design process to guide them through the initial conception, evaluation, testing and re-design stages. The activity culminates with a classroom competition and scoring to evaluate how each team's design performed.
Students follow the steps of the engineering design process while learning more …
Students follow the steps of the engineering design process while learning more about assistive devices and biomedical engineering applied to basic structural engineering concepts. Their engineering challenge is to design, build and test small-scale portable wheelchair ramp prototypes for fictional clients. They identify suitable materials and demonstrate two methods of representing design solutions (scale drawings and simple models or classroom prototypes). Students test the ramp prototypes using a weighted bucket; successful prototypes meet all the student-generated design requirements, including support of a predetermined weight.
Students apply what they have learned about the engineering design process to …
Students apply what they have learned about the engineering design process to a real-life problem that affects them and/or their school. They chose a problem as a group, and then follow the engineering design process to come up with and test their design solution. This activity teaches students how to use the engineering design process while improving something in the school environment that matters to them. By performing each step of the design process, students can experience what it is like to be an engineer.
Students are introduced to the (hypothetical) task of developing an invisible (non-intrusive) …
Students are introduced to the (hypothetical) task of developing an invisible (non-intrusive) security system to protect the school's treasured mummified troll! Solving the challenge depends on an understanding of the properties of light. After being introduced to the challenge question, students generate ideas and consider the knowledge required find solutions. They watch a portion of the "Mythbuster's Crimes and Myth-Demeanors" episode ($20), which helps direct their research and learning toward solving the challenge. They begin to study laser applications in security systems, coming to realize the role of lasers in today's society.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.