Search Resources

139 Results

View
Selected filters:
  • Design Studies
Above-Ground Storage Tanks in the Houston Ship Channel
Read the Fine Print
Educational Use
Rating

Students are provided with an introduction to above-ground storage tanks, specifically how and why they are used in the Houston Ship Channel. The introduction includes many photographic examples of petrochemical tank failures during major storms and describes the consequences in environmental pollution and costs to disrupted businesses and lives, as well as the lack of safety codes and provisions to better secure the tanks in coastal regions regularly visited by hurricanes. Students learn how the concepts of Archimedes' principle and Pascal's law act out in the form of the uplifting and buckling seen in the damaged and destroyed tanks, which sets the stage for the real-world engineering challenge presented in the associated activity to design new and/or improved storage tanks that can survive storm conditions.

Subject:
Design Studies
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Architects and Engineers
Read the Fine Print
Educational Use
Rating

Students explore the interface between architecture and engineering. In the associated hands-on activity, students act as both architects and engineers by designing and building a small parking garage.

Subject:
Design Studies
Physics
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Denali Lander
Janet Yowell
Katherine Beggs
Melissa Straten
Sara Stemler
Date Added:
09/18/2014
Arch of Titus
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This art history video discussion examines the Arch of Titus, originally Pentelic marble, early 19h-century restoration is in travertine, c. 81 C.E. (Via Sacra, Rome).

Subject:
Arts Education
Design Studies
Drafting & Design
Material Type:
Activity/Lab
Diagram/Illustration
Provider:
Khan Academy
Provider Set:
Smarthistory
Author:
Beth Harris
Steven Zucker
Date Added:
10/10/2018
Are We Like Robots?
Read the Fine Print
Educational Use
Rating

This lesson explores the similarities between how a human being moves/walks and how a robot moves. This allows students to see the human body as a system, i.e., from the perspective of an engineer. It shows how movement results from (i) decision making, i.e., deciding to walk and move, and (ii) implementing the decision by conveying the decision to the muscle (human) or motor (robot).

Subject:
Design Studies
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ajay Nair
Satish Nair
Date Added:
09/18/2014
Asteroid Impact
Read the Fine Print
Educational Use
Rating

Through this earth science curricular unit, student teams are presented with the scenario that an asteroid will impact the Earth. In response, their challenge is to design the location and size of underground caverns to shelter the people from an uninhabitable Earth for one year. Driven by this adventure scenario, student teams 1) explore general and geological maps of their fictional state called Alabraska, 2) determine the area of their classroom to help determine the necessary cavern size, 3) learn about map scales, 4) test rocks, 5) identify important and not-so-important rock properties for underground caverns, and 6) choose a final location and size.

Subject:
Design Studies
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Balsa Towers
Read the Fine Print
Educational Use
Rating

Students groups use balsa wood and glue to build their own towers using some of the techniques they learned from the associated lesson. While general guidelines are provided, give students freedom with their designs and encourage them to implement what they have learned about structural engineering. The winning team design is the tower with the highest strength-to-weight ratio.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Benjamin Burnham
Kelly Devereaux
Date Added:
09/18/2014
Beating the Motion Sensor
Read the Fine Print
Educational Use
Rating

Lighting is responsible for nearly one-third of the electricity use in buildings. One of the best ways to conserve energy is to make sure the lights are turned off when no one is in a room. This process can be automated using motion sensors. In this activity, students explore material properties as they relate to motion detection, and use that knowledge to make design judgments about what types of motion detectors to use in specific applications.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Darcie Chinnis
Janet Yowell
Date Added:
09/18/2014
Bernini's Sant'Andrea al Quirinale
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This art history video discussion looks at Gian Lorenzo Bernini's "Sant'Andrea al Quirinale", 1658-70, Rome; commissioned by Cardinal Camillo Francesco Maria Pamphili for the nearby Jesuit seminary.

Subject:
Arts Education
Design Studies
Drafting & Design
Material Type:
Activity/Lab
Diagram/Illustration
Provider:
Khan Academy
Provider Set:
Smarthistory
Author:
Beth Harris
Steven Zucker
Date Added:
10/10/2018
Birth of the Gothic: Abbot Suger and the Ambulatory at St. Denis
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This art history video discussion examines the Ambulatory at the Basilica of Saint Denis, Paris, 1140-44.

Subject:
Arts Education
Design Studies
Drafting & Design
Material Type:
Activity/Lab
Diagram/Illustration
Provider:
Khan Academy
Provider Set:
Smarthistory
Author:
Beth Harris
Steven Zucker
Date Added:
10/10/2018
Boom Construction
Read the Fine Print
Educational Use
Rating

Student teams design their own booms (bridges) and engage in a friendly competition with other teams to test their designs. Each team strives to design a boom that is light, can hold a certain amount of weight, and is affordable to build. Teams are also assessed on how close their design estimations are to the final weight and cost of their boom "construction." This activity teaches students how to simplify the math behind the risk and estimation process that takes place at every engineering firm prior to the bidding phase when an engineering firm calculates how much money it will take to build the project and then "bids" against other competitors.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Janet Yowell
Stanislav Roslyakov
Date Added:
09/18/2014
Breaking Beams
Read the Fine Print
Educational Use
Rating

Students learn about stress and strain by designing and building beams using polymer clay. They compete to find the best beam strength to beam weight ratio, and learn about the trade-offs engineers make when designing a structure.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Breaking the Mold
Read the Fine Print
Educational Use
Rating

In this math activity, students conduct a strength test using modeling clay, creating their own stress vs. strain graphs, which they compare to typical steel and concrete graphs. They learn the difference between brittle and ductile materials and how understanding the strength of materials, especially steel and concrete, is important for engineers who design bridges and structures.

Subject:
Design Studies
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Valenti
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
02/19/2009
Bridge Types: Tensile & Compressive Forces
Read the Fine Print
Educational Use
Rating

Students explore how tension and compression forces act on three different bridge types. Using sponges, cardboard and string, they create models of beam, arch and suspension bridges and apply forces to understand how they disperse or transfer these loads.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Valenti
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Bridges
Read the Fine Print
Educational Use
Rating

Through a five-lesson series that includes numerous hands-on activities, students are introduced to the importance and pervasiveness of bridges for connecting people to resources, places and other people, with references to many historical and current-day examples. In learning about bridge types arch, beam, truss and suspension students explore the effect of tensile and compressive forces. Students investigate the calculations that go into designing bridges; they learn about loads and cross-sectional areas by designing and testing the strength of model piers. Geology and soils are explored as they discover the importance of foundations, bearing pressure and settlement considerations in the creation of dependable bridges and structures. Students learn about brittle and ductile material properties. Students also learn about the many cost factors that comprise the economic considerations of bridge building. Bridges are unique challenges that take advantage of the creative nature of engineering.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Bridging the Gaps
Read the Fine Print
Educational Use
Rating

Students are presented with a brief history of bridges as they learn about the three main bridge types: beam, arch and suspension. They are introduced to two natural forces tension and compression common to all bridges and structures. Throughout history, and today, bridges are important for connecting people to resources, places and other people. Students become more aware of the variety and value of bridges around us in our everyday lives.

Subject:
Design Studies
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
09/18/2014
Build a Birdhouse
Read the Fine Print
Educational Use
Rating

Students construct bird nests and birdhouses. They research birds of their choosing and then design houses that meet the birds' specific needs. It works well to conduct this activity in conjunction with a grades 9-12 woodshop class by partnering the older students with the younger students (but it is not required to do this in order to conduct the activity).

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Building Our Bridge to Fun!
Read the Fine Print
Educational Use
Rating

Students identify different bridge designs and construction materials used in modern day engineering. They work in construction teams to create paper bridges and spaghetti bridges based on existing bridge designs. Students progressively realize the importance of the structural elements in each bridge. They also measure vertical displacements under the center of the spaghetti bridge span when a load is applied. Vertical deflection is measured using a LEGO MINDSTORMS(TM) NXT intelligent brick and ultrasonic sensor. As they work, students experience tension and compression forces acting on structural elements of the two bridge prototypes. In conclusion, students discuss the material properties of paper and spaghetti and compare bridge designs with performance outcomes.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eduardo Suescun
Date Added:
09/18/2014
Building Paddle Boats
Conditional Remix & Share Permitted
CC BY-NC
Rating

Students will design, build, and test a spring-powered pontoon boat using common materials that must travel at least 20cm. Students will then use video software to analyze the motion of their craft.

Subject:
Design Studies
Physics
Material Type:
Activity/Lab
Lesson
Provider:
South Metro-Salem STEM Partnership
Author:
Todd Dauenhauer
Date Added:
05/24/2018
Building a Stronger (Sweeter) New Orleans
Read the Fine Print
Educational Use
Rating

Students create and analyze composite materials with the intent of using the materials to construct a structure with optimal strength and minimal density. The composite materials are made of puffed rice cereal, marshmallows and chocolate chips. Student teams vary the concentrations of the three components to create their composite materials. They determine the material density and test its compressive strength by placing weights on it and measuring how much the material compresses. Students graph stress vs. strain and determine Young's modulus to analyze the strength of their materials.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Charisse Nelson
Sarah Wigodsky
Date Added:
10/14/2015
Bumps and Bruises
Read the Fine Print
Educational Use
Rating

Athletes often wear protective gear to keep themselves safe in contact sports. In this spirit, students follow the steps of engineering design process as they design, build and test protective padding for an egg drop. Many of the design considerations surrounding egg drops are similar to sports equipment design. Watching the transformation of energy from potential to kinetic, observing the impact and working under material constraints introduces students to "sports engineering" and gives them a chance to experience some of the challenges engineers face in designing equipment to protect athletes.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail Watrous
Connor Lowrey
Denali Lander
Janet Yowell
Katherine Beggs
Melissa Straten
Date Added:
10/14/2015
Chair Design
Read the Fine Print
Educational Use
Rating

Students become familiar with the engineering design process as they design, build and test chair prototypes. The miniature chairs must be sturdy and functional enough to hold a wooden, hinged artist model or a floppy stuffed animal. They use their prototypes to assess design strengths and weaknesses.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrew Afram
Elissa Milto
Erica Wilson
Date Added:
09/18/2014
Choosing a Pyramid Site
Read the Fine Print
Educational Use
Rating

Working in engineering project teams, students evaluate sites for the construction of a pyramid. They base their decision on site features as provided by a surveyor's report; distance from the quarry, river and palace; and other factors they deem important to the project based on their team's values and priorities.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Glen Sirakavit
Jacquelyn Sullivan
Lawrence E. Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Clay Boats
Read the Fine Print
Educational Use
Rating

Students use a small quantity of modeling clay to make boats that float in a tub of water. The object is to build boats that hold as much weight as possible without sinking. In the process of designing and testing their prototype creations, students discover some of the basic principles of boat design, gain first-hand experience with concepts such as buoyancy and density, and experience the steps of the engineering design process.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
Colosseum
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This art history video discussion looks at the Colosseum (Amphitheatrum Flavium), c. 70-80 C.E., Rome.

Subject:
Arts Education
Design Studies
Drafting & Design
Material Type:
Activity/Lab
Diagram/Illustration
Provider:
Khan Academy
Provider Set:
Smarthistory
Author:
Beth Harris
Julia Avra Ugoretz
Steven Zucker
Valentina Follo
Date Added:
10/10/2018
Column of Trajan
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating

This art history video discussion examines the Column of Trajan, Carrara marble, completed 113 C.E., Rome. Dedicated to Emperor Trajan (Marcus Ulpius Nerva Traianus b. 53 , d. 117 C.E.) in honor of his victory over Dacia (now Romania) 101-02 and 105-06 C.E.

Subject:
Arts Education
Design Studies
Drafting & Design
Material Type:
Activity/Lab
Diagram/Illustration
Provider:
Khan Academy
Provider Set:
Smarthistory
Author:
Beth Harris
Steven Zucker
Date Added:
10/10/2018
Construct and Test Roofs for Different Climates
Read the Fine Print
Educational Use
Rating

We design and create objects to make our lives easier and more comfortable. The houses in which we live are excellent examples of this. Depending on your local climate, the features of your house have been designed to satisfy your particular environmental needs: protection from hot, cold, windy and/or rainy weather. In this activity, students design and build model houses, then test them against various climate elements, and then re-design and improve them. Using books, websites and photos, students learn about the different types of roofs found on various houses in different environments throughout the world.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abigail T. Waltrous
Denise W. Carlson
Martha Cyr
Date Added:
09/18/2014
Construction Technologies: Create the Strongest Bridge
Read the Fine Print
Educational Use
Rating

Students work in pairs to create three simple types of model bridges (beam, arch, suspension). They observe quantitatively how the bridges work under load and why engineers use different types of bridges for different places. They also get an idea of the parts needed to build bridges, and their functions. The strength of model bridges is mainly a factor of the quality of materials used, and therefore they do not provide a clear visual representation of tension and compression forces involved. Yet, students are able to see these forces at work in three prototype designs and draw conclusions about their dependence on span, width and supporting structures of the bridge designs.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Joy Trahan-Liptak
Date Added:
09/18/2014
Cooking with the Sun - Creating a Solar Oven
Read the Fine Print
Educational Use
Rating

Student groups are given a set of materials: cardboard, insulating materials, aluminum foil and Plexiglas, and challenged to build solar ovens. The ovens must collect and store as much of the sun's energy as possible. Students experiment with heat transfer through conduction by how well the oven is insulated and radiation by how well it absorbs solar radiation. They test the effectiveness of their designs qualitatively by baking something and quantitatively by taking periodic temperature measurements and plotting temperature vs. time graphs. To conclude, students think like engineers and analyze the solar oven's strengths and weaknesses compared to conventional ovens.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Lauren Powell
Date Added:
09/18/2014
Cost Comparisons
Read the Fine Print
Educational Use
Rating

Students learn about the many types of expenses associated with building a bridge. Working like engineers, they estimate the cost for materials for a bridge member of varying sizes. After making calculations, they graph their results to compare how costs change depending on the use of different materials (steel vs. concrete). They conclude by creating a proposal for a city bridge design based on their findings.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denali Lander
Denise W. Carlson
Joe Friedrichsen
Jonathan S. Goode
Malinda Schaefer Zarske
Natalie Mach
Date Added:
10/14/2015
Creative Engineering Design
Read the Fine Print
Educational Use
Rating

Students are introduced to the world of creative engineering product design. Through six activities, teams work through the steps of the engineering design process (or loop) by completing an actual design challenge presented in six steps. The project challenge is left up to the teacher or class to determine; it might be one decided by the teacher, brainstormed with the class, or the example provided (to design a prosthetic arm that can perform a mechanical function). As students begin by defining the problem, they learn to recognize the need, identify a target population, relate to the project, and identify its requirements and constraints. Then they conduct research, brainstorm alternative solutions, evaluate possible solutions, create and test prototypes, and consider issues for manufacturing. See the Unit Schedule section for a list of example design project topics.

Subject:
Design Studies
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
See individual activities.
Date Added:
09/18/2014
Creepy Silly Putty
Read the Fine Print
Educational Use
Rating

Students learn about viscoelastic material behavior, such as strain rate dependence and creep, by using silly putty, an easy-to-make polymer material. They learn how to make silly putty, observe its behavior with different strain rates, and then measure the creep time of different formulations of silly putty. By seeing the viscoelastic behavior of silly putty, students start to gain an understanding of how biological materials function. Students gain experience in data collection, graph interpretation, and comparison of material properties to elucidate material behavior. It is recommended that students perform Part 1of the activity first (making and playing with silly putty), then receive the content and concept information in the associated lesson, and then complete Part 2 of the activity (experimenting and making measurements with silly putty).

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brandi N. Briggs
Denise W. Carlson
Marissa H. Forbes
Date Added:
09/18/2014
Daylighting Design
Read the Fine Print
Educational Use
Rating

Students explore the many different ways that engineers provide natural lighting to interior spaces. They analyze various methods of daylighting by constructing model houses from foam core board and simulating the sun with a desk lamp. Teams design a daylighting system for their model houses based on their observations and calculations of the optimal use of available sunlight to their structure.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Landon B. Gennetten
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
10/14/2015
Deformation: Nanocomposite Compression
Read the Fine Print
Educational Use
Rating

Students learn about nanocomposites, compression and strain as they design and program robots that compress materials. Student groups conduct experiments to determine how many LEGO MINDSTORMS(TM) NXT motor rotations it takes to compress soft nanocomposites, including mini marshmallows, Play-Doh®, bread and foam. They measure the length and width of their nanocomposite objects before and after compression to determine the change in length and width as a function of motor rotation.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jennifer S. Haghpanah
Date Added:
09/18/2014
Design Step 1: Identify the Need
Read the Fine Print
Educational Use
Rating

Students practice the initial steps involved in an engineering design challenge. They begin by reviewing the steps of the engineering design loop and discussing the client need for the project. Next, they identify a relevant context, define the problem within their design teams, and examine the project's requirements and constraints. (Note: Conduct this activity in the context of a design project that students are working on, which could be a challenge determined by the teacher, brainstormed with the class, or the example project challenge provided [to design a prosthetic arm that can perform a mechanical function].)

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Design Step 2: Research the Problem
Read the Fine Print
Educational Use
Rating

Through Internet research, patent research, standards and codes research, user interviews (if possible) and other techniques (idea web, reverse engineering), students further develop the context for their design challenge. In subsequent activities, the design teams use this body of knowledge about the problem to generate product design ideas. (Note: Conduct this activity in the context of a design project that students are working on, which could be a challenge determined by the teacher, brainstormed with the class, or the example project challenge provided [to design a prosthetic arm that can perform a mechanical function]. This activity is Step 2 in a series of six that guide students through the engineering design loop.)

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Design Step 3: Brainstorm Possible Solutions
Read the Fine Print
Educational Use
Rating

Brainstorming is a team creativity activity that helps generate a large number of potential solutions to a problem. In this activity, students participate in a group brainstorming activity to generate possible solutions to their engineering design challenge. Students learn brainstorming guidelines and practice within their teams to create a poster of ideas. The posters are used in a large group critiquing activity that ultimately helps student teams create a design project outline. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 3 in a series of six that guide students through the engineering design loop.)

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Design Step 5: Construct a Prototype
Read the Fine Print
Educational Use
Rating

Students learn about the manufacturing phase of the engineering design process. They start by building prototypes, which is a special type of model used to test new design ideas. Students gain experience using a variety of simple building materials, such as foam core board, balsa wood, cardstock and hot glue. They present their prototypes to the class for user testing and create prototype iterations based on feedback. (Note: Conduct this activity in the context of a design project that students are working on; this activity is Step 5 in a series of six that guide students through the engineering design loop.)

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Date Added:
09/18/2014
Design Weather Instruments Using LEGO Sensors
Read the Fine Print
Educational Use
Rating

Student teams design and create LEGO® structures to house and protect temperature sensors. They leave their structures in undisturbed locations for a week, and regularly check and chart the temperatures. This activity engages students in the design and analysis aspects of engineering.

Subject:
Design Studies
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014