Updating search results...

Search Resources

111 Results

View
Selected filters:
  • human-body
DNA Build
Read the Fine Print
Educational Use
Rating
0.0 stars

Students reinforce their knowledge that DNA is the genetic material for all living things by modeling it using toothpicks and gumdrops that represent the four biochemicals (adenine, thiamine, guanine, and cytosine) that pair with each other in a specific pattern, making a double helix. They investigate specific DNA sequences that code for certain physical characteristics such as eye and hair color. Student teams trade DNA "strands" and de-code the genetic sequences to determine the physical characteristics (phenotype) displayed by the strands (genotype) from other groups. Students extend their knowledge to learn about DNA fingerprinting and recognizing DNA alterations that may result in genetic disorders.

Subject:
Biology
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Megan Schroeder
Date Added:
09/18/2014
DNA: The Human Body Recipe
Read the Fine Print
Educational Use
Rating
0.0 stars

As a class, students work through an example showing how DNA provides the "recipe" for making our body proteins. They see how the pattern of nucleotide bases (adenine, thymine, guanine, cytosine) forms the double helix ladder shape of DNA, and serves as the code for the steps required to make genes. They also learn some ways that engineers and scientists are applying their understanding of DNA in our world.

Subject:
Biology
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Frank Burkholder
Jessica Todd
Malinda Schaefer Zarske
Date Added:
09/18/2014
DNA detective — Science Learning Hub
Rating
0.0 stars

In this activity, students learn about the collection and processing of DNA evidence and use DNA profiling to solve a crime. The activity is designed for use on an interactive whiteboard with the whole class, and it can also be used individually or in small groups at a computer or with a data projector and laptop.

By the end of this activity, students should be able to:

describe where DNA is found in the body and how DNA may be ‘left behind’ at a crime scene
describe the basic structure of DNA
explain the process of DNA profiling

Subject:
Biology
Forensic Science
Science
Material Type:
Activity/Lab
Author:
Science Learning Hub
Date Added:
01/16/2019
Digestion Simulation
Read the Fine Print
Educational Use
Rating
0.0 stars

To reinforce students' understanding of the human digestion process, the functions of several stomach and small intestine fluids are analyzed, and the concept of simulation is introduced through a short, introductory demonstration of how these fluids work. Students learn what simulation means and how it relates to the engineering process, particularly in biomedical engineering. The teacher demo requires vinegar, baking soda, water and aspirin.

Subject:
Health Science
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jacob Crosby
Malinda Schaefer Zarske
Date Added:
09/18/2014
Does My Model Valve Stack up to the Real Thing?
Read the Fine Print
Educational Use
Rating
0.0 stars

Following the steps of the iterative engineering design process, student teams use what they learned in the previous lessons and activity in this unit to research and choose materials for their model heart valves and test those materials to compare their properties to known properties of real heart valve tissues. Once testing is complete, they choose final materials and design and construct prototype valve models, then test them and evaluate their data. Based on their evaluations, students consider how they might redesign their models for improvement and then change some aspect of their models and retest aiming to design optimal heart valve models as solutions to the unit's overarching design challenge. They conclude by presenting for client review, in both verbal and written portfolio/report formats, summaries and descriptions of their final products with supporting data.

Subject:
Health Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michael Duplessis
Date Added:
10/14/2015
Don't Bump into Me!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students' understanding of how robotic ultrasonic sensors work is reinforced in a design challenge involving LEGO MINDSTORMS(TM) NXT robots and ultrasonic sensors. Student groups program their robots to move freely without bumping into obstacles (toy LEGO people). They practice and learn programming skills and logic design in parallel. They see how robots take input from ultrasonic sensors and use it to make decisions to move, resulting in behavior similar to the human sense of sight but through the use of sound sensors, more like echolocation. Students design-test-redesign-retest to achieve successful programs. A PowerPoint® presentation and pre/post quizzes are provided.

Subject:
Electrical & Electronics
Practical & Applied Arts
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Nishant Sinha
Pranit Samarth
Satish S. Nair
Date Added:
09/18/2014
Easy Science For Kids
Rating
0.0 stars

Science content tailored for young learners. It provides interactive and easy-to-understand explanations on various scientific topics, including biology, chemistry, physics, and earth sciences.

The site features:

Articles and Lessons: Simple, age-appropriate explanations of scientific concepts.
Educational Games and Quizzes: Interactive activities to reinforce learning.
Videos: Visual content that makes complex ideas more accessible.
Science Experiments: Hands-on activities that encourage practical learning.

Overall, Easy Science for Kids is designed to make science fun and accessible for children, helping them develop a curiosity and understanding of the natural world.

Subject:
Science
Material Type:
Activity/Lab
Author:
Easy science for kids
Date Added:
09/04/2024
Elasticity & Young's Modulus for Tissue Analysis
Read the Fine Print
Educational Use
Rating
0.0 stars

As part of the engineering design process to create testable model heart valves, students learn about the forces at play in the human body to open and close aortic valves. They learn about blood flow forces, elasticity, stress, strain, valve structure and tissue properties, and Young's modulus, including laminar and oscillatory flow, stress vs. strain relationship and how to calculate Young's modulus. They complete some practice problems that use the equations learned in the lesson mathematical functions that relate to the functioning of the human heart. With this understanding, students are ready for the associated activity, during which they research and test materials and incorporate the most suitable to design, build and test their own prototype model heart valves.

Subject:
Health Science
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michael Duplessis
Date Added:
10/14/2015
Engineering Bones
Read the Fine Print
Educational Use
Rating
0.0 stars

Students extend their knowledge of the skeletal system to biomedical engineering design, specifically the concept of artificial limbs. Students relate the skeleton as a structural system, focusing on the leg as structural necessity. They learn about the design considerations involved in the creation of artificial limbs, including materials and sensors.

Subject:
Health Science
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Malinda Schaefer Zarske
Megan Podlogar
Date Added:
09/18/2014
Engineering and the Human Body
Read the Fine Print
Educational Use
Rating
0.0 stars

This unit covers the broad spectrum of topics that make-up our very amazing human body. Students are introduced to the space environment and learn the major differences between the environment on Earth and that of outer space. The engineering challenges that arise because of these discrepancies are also discussed. Then, students dive into the different components that make up the human body: muscles, bones and joints, the digestive and circulatory systems, the nervous and endocrine systems, the urinary system, the respiratory system, and finally the immune system. Students learn about the different types of muscles in the human body and the effects of microgravity on muscles. Also, they learn about the skeleton, the number of and types of bones in the body, and how outer space affects astronauts' bones. In the lessons on the digestive, circulatory, nervous and endocrine systems, students learn how these vital system work and the challenges faced by astronauts whose systems are impacted by spaceflight. And lastly, advances in engineering technology are discussed through the lessons on the urinary, respiratory and immune systems while students learn how these systems work with all the other body components to help keep the human body healthy.

Subject:
Health Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
10/14/2015
Engineering the Heart: Heart Valves
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how healthy human heart valves function and the different diseases that can affect heart valves. They also learn about devices and procedures that biomedical engineers have designed to help people with damaged or diseased heart valves. Students learn about the pros and cons of different materials and how doctors choose which engineered artificial heart valves are appropriate for certain people.

Subject:
Health Science
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Terry
Brandi Briggs
Carleigh Samson
Date Added:
09/18/2014
Essential Physiology
Unrestricted Use
CC BY
Rating
0.0 stars

Human Anatomy and Physiology is designed for the two-semester anatomy and physiology course taken by life science and allied health students. The textbook follows the scope and sequence of most Human Anatomy and Physiology courses, and its coverage and organization were informed by hundreds of instructors who teach the course. Instructors can customize the book, adapting it to the approach that works best in their classroom. The artwork for this textbook is aimed focusing student learning through a powerful blend of traditional depictions and instructional innovations. Color is used sparingly, to emphasize the most important aspects of any given illustration. Significant use of micrographs from the University of Michigan complement the illustrations, and provide the students with a meaningful alternate depiction of each concept. Finally, enrichment elements provide relevance and deeper context for students, particularly in the areas of health, disease, and information relevant to their intended careers.

Subject:
Biology
Science
Material Type:
Textbook
Provider:
Rice University
Provider Set:
OpenStax CNX
Author:
Nancy Aguilar-Roca
Date Added:
05/18/2016
Feel Better Faster: All about Flow Rate
Read the Fine Print
Educational Use
Rating
0.0 stars

All of us have felt sick at some point in our lives. Many times, we find ourselves asking, "What is the quickest way that I can start to feel better?" During this two-lesson unit, students study that question and determine which form of medicine delivery (pill, liquid, injection/shot) offers the fastest relief. This challenge question serves as a real-world context for learning all about flow rates. Students study how long various prescription methods take to introduce chemicals into our blood streams, as well as use flow rate to determine how increasing a person's heart rate can theoretically make medicines work more quickly. Students are introduced to engineering devices that simulate what occurs during the distribution of antibiotic cells in the body.

Subject:
Physics
Science
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michelle Woods
Date Added:
09/18/2014
Floppy Heart Valves
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with an engineering challenge that asks them to develop a material and model that can be used to test the properties of aortic valves without using real specimens. Developing material that is similar to human heart valves makes testing easier for biomedical engineers because they can test new devices or ideas on the model valve instead of real heart valves, which can be difficult to obtain for research. To meet the challenge, students are presented with a variety of background information, are asked to research the topic to learn more specific information pertaining to the challenge, and design and build a (prototype) product. After students test their products and make modifications as needed, they convey background and product information in the form of portfolios and presentations to the potential buyer.

Subject:
Health Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Michael Duplessis
Date Added:
10/14/2015
Follow the Light
Read the Fine Print
Educational Use
Rating
0.0 stars

Students' understanding of how robotic light sensors work is reinforced in a design challenge involving LEGO MINDSTORMS(TM) NXT robots and light sensors. Working in pairs, students program LEGO robots to follow a flashlight as its light beam moves around. Students practice and learn programming skills and logic design in parallel. They see how robots take input from light sensors and use it to make decisions to move, similar to the human sense of sight. Students also see how they perform the steps of the engineering design process in the course of designing and testing to achieve a successful program. A PowerPoint® presentation and pre/post quizzes are provided.

Subject:
Electrical & Electronics
Practical & Applied Arts
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Nishant Sinha
Pranit Samarth
Satish S. Nair
Date Added:
09/18/2014
Forced to Fracture
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how forces affect the human skeletal system through fractures and why certain bones are more likely to break than others depending on their design and use in the body. They learn how engineers and doctors collaborate to design effective treatments with consideration for the location, fracture severity and patient age, as well as the use of biocompatible materials. Learning the lesson content prepares students for the associated activity in which they test small animal bones to failure and then design treatment repair plans.

Subject:
Health Science
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrea Lee
Megan Ketchum
Date Added:
09/18/2014
Free Units, Curriculum & Other Supports - Core Knowledge Foundation K-9
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

"The Core Knowledge Foundation provides open access to content-rich curriculum materials for preschool through grade 8, including the Core Knowledge Curriculum Series™, with many materials now available and many more in development."

You will need to provide your email address to download these amazing resources. CK has aligned their ELA to the Science of Reading in collaboration with Amplify Reading.
*Full Units
*Books for Students
*Teaching Materials
*Scope & Sequence

Subject:
Arts Education
English Language Arts
Health & Fitness
Health Education
Math
Science
Material Type:
Activity/Lab
Lesson
Primary Source
Teaching/Learning Strategy
Textbook
Unit of Study
Author:
Core Knowledge Foundation
Date Added:
11/01/2023
The Function of Villi in the Small Intestine
Read the Fine Print
Rating
0.0 stars

This activity was designed for blind learners, but all types of learners can use it to understand how villi function in the small intestine. The purpose of this activity is to examine a model of the inside of the small intestine to support understanding of the function of villi in digestion.

Subject:
Education
Material Type:
Activity/Lab
Provider:
Perkins School for the Blind
Provider Set:
Accessible Science
Author:
Sarah Hughes
Date Added:
01/01/2011
Gait Analysis
Read the Fine Print
Educational Use
Rating
0.0 stars

In this open-ended, hands-on activity that provides practice in engineering data analysis, students are given gait signature metric (GSM) data for known people types (adults and children). Working in teams, they analyze the data and develop models that they believe represent the data. They test their models against similar, but unknown (to the students) data to see how accurate their models are in predicting adult vs. child human subjects given known GSM data. They manipulate and graph data in Excel® to conduct their analyses.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Jeremy Scheffler
Date Added:
10/14/2015
Healthcare and Medicine - Blood: Fetal Hemoglobin and Hematocrit
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Although mom controls the oxygen source, the fetus has a couple of clever tricks to get the most oxygen possible! Rishi is a pediatric infectious disease physician and works at Khan Academy.

Subject:
Biology
Health Science
Science
Material Type:
Activity/Lab
Provider:
Khan Academy
Provider Set:
Khan Academy
Author:
Salman Khan
Date Added:
10/10/2018