Updating search results...

Search Resources

4948 Results

View
Selected filters:
  • Science
Population Growth in Yeasts
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson is the second of two that explore cellular respiration and population growth in yeasts. In the first lesson, students set up a simple way to indirectly observe and quantify the amount of respiration occurring in yeast-molasses cultures. Based on questions that arose during the first lesson and its associated activity, in this lesson students work in small groups to design experiments that will determine how environmental factors affect yeast population growth.

Subject:
Biology
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
The Portable Fluid Power Demonstrator (PFPD)
Read the Fine Print
Educational Use
Rating
0.0 stars

Working in teams, students learn the basics of fluid power design using the PFPD as their investigative platform. They investigate the similarities and differences between using pneumatic and hydraulic power in the PFPD. With the main components of the PFPD already assembled, student groups determine the correct way to connect the valves to the actuators using colored, plastic tubing. Once connected, they compete in timed challenges to test their abilities to separate material out of containers using the PFPDs. NOTE: No special pre-requisite knowledge is required for students to be successful in this activity.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Bettag
John H. Lumkes
Jose Garcia
Nicki Schrank
Phong Pham
Date Added:
09/18/2014
Portable Sundial
Read the Fine Print
Educational Use
Rating
0.0 stars

Students investigate the accuracy of sundials and the discrepancy that lies between "real time" and "clock time." They track the position of the sun during the course of a relatively short period of time as they make a shadow plot, a horizontal sundial, and a diptych sundial. (The activity may be abridged to include only one or two of the different sundials, instead of all three.)

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Date Added:
09/18/2014
Portable Wheelchair Ramp Challenge
Read the Fine Print
Educational Use
Rating
0.0 stars

Students follow the steps of the engineering design process while learning more about assistive devices and biomedical engineering applied to basic structural engineering concepts. Their engineering challenge is to design, build and test small-scale portable wheelchair ramp prototypes for fictional clients. They identify suitable materials and demonstrate two methods of representing design solutions (scale drawings and simple models or classroom prototypes). Students test the ramp prototypes using a weighted bucket; successful prototypes meet all the student-generated design requirements, including support of a predetermined weight.

Subject:
Health Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jared R. Quinn
Kristen Billiar
Terri Camesano
Date Added:
09/18/2014
Position, Velocity and Acceleration
Read the Fine Print
Educational Use
Rating
0.0 stars

Students observe four different classroom setups with objects in motion (using toy cars, a ball on an incline, and a dynamics cart). At the first observation of each scenario, students sketch predicted position vs. time and velocity vs. time graphs. Then the classroom scenarios are conducted again with a motion detector and accompanying tools to produce position vs. time and velocity vs. time graphs for each scenario. Students compare their predictions with the graphs generated by technology and discuss their findings. This lesson requires assorted classroom supplies, as well as motion detector technology.

Subject:
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Sandall
Jeremy Scheffler
Date Added:
10/14/2015
Potato Float
Read the Fine Print
Rating
0.0 stars

This is a hands-on lab activity about seawater density, specifically the relationship between density of fluid, weight of an object, and buoyancy. Learners will develop hypotheses and observe a demonstration of density to understand its role in buoyancy. They will also examine the effect of salinity on density. Background information, common preconceptions, a glossary and more is included. This activity is part of the Aquarius Hands-on Laboratory Activities.

Subject:
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
10/05/2018
Pourquoi le ketchup s’écoule-t-il si lentement? (Parlons sciences)
Read the Fine Print
Educational Use
Rating
0.0 stars

« Ton ketchup ne veut pas sortir de la bouteille? Laisse-nous te révéler les secrets de la viscosité de ce fluide non newtonien! »

*Texte, images, animation, vidéo:

-Comment les fluides s’écoulent-ils?
-Pourquoi le ketchup est-il si particulier?
-Quelle est la meilleure façon de faire couler du ketchup?
-Amorces de discussion

*Suggestions et liens annexes: articles, activités de compréhension « relation question-réponse » et « toile de définition du concept » (fiches reproductibles adaptées et téléchargeables), activité tableau en deux volets, projet/enquête Tomatosphère (germination de graines), vidéos divertissantes et informatives

Subject:
Chemistry
Physical Science
Physics
Science
Material Type:
Activity/Lab
Diagram/Illustration
Lesson
Module
Primary Source
Reading
Simulation
Provider:
parlons sciences
Author:
Parlons sciences
Date Added:
03/11/2024
Pourquoi les navires flottent-ils? (Parlons sciences)
Read the Fine Print
Educational Use
Rating
0.0 stars

« T’es-tu déjà demandé pourquoi les navires se maintiennent à flot? La réponse est dans la flottabilité! »

*Texte, images, vidéo, illustrations:

-Qu’est-ce que la flottabilité?
-Quel est le lien entre la flottabilité et la densité?
-Comment la flottabilité et la densité s’appliquent-elles aux navires?
-Amorces de discussion

Suggestions/liens annexes: activité « toile de définition du concept » (fiche reproductible adaptée), plusieurs expériences qui illustrent la flottabilité

Subject:
Physical Science
Physics
Science
Material Type:
Diagram/Illustration
Lesson
Module
Reading
Provider:
parlons sciences
Author:
Amy Mcdonald
Parlons sciences
Date Added:
03/11/2024
Power, Work and the Waterwheel
Read the Fine Print
Educational Use
Rating
0.0 stars

Waterwheels are devices that generate power and do work. Student teams construct waterwheels using two-liter plastic bottles, dowel rods and index cards, and calculate the power created and work done by them.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Chris Yakacki
Denise W. Carlson
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
10/14/2015
Power Your House with Water
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers design devices that use water to generate electricity by building model water turbines and measuring the resulting current produced in a motor. Student teams work through the engineering design process to build the turbines, analyze the performance of their turbines and make calculations to determine the most suitable locations to build dams.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Tyler Maline
Date Added:
10/14/2015
Power Your House with Wind
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how engineers harness the energy of the wind to produce power by following the engineering design process as they prototype two types of wind turbines and test to see which works best. Students also learn how engineers decide where to place wind turbines, and the advantages and disadvantages to using wind power compared to other non-renewable energy sources.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Lauren Cooper
Malinda Schaefer Zarske
Tyler Maline
Date Added:
10/14/2015
Power for Developing Countries
Read the Fine Print
Educational Use
Rating
0.0 stars

Working in groups, students look at three different villages in various parts of Africa and design economically viable engineering solutions to answer the energy needs of the off-the-grid small towns, given limited budgets. Each village has different nearby resources, both renewable and nonrenewable. Student teams conduct research, make calculations, consider the options and create plans, which they present to the class. Through their investigations and planning of custom solutions for each locale, they experience the real-world engineering research and analysis steps of the engineering design process.

Subject:
Environmental Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Kushal Seetharam
Date Added:
10/14/2015
Powerful Thinking Routines - graphic organizers
Rating
0.0 stars

Project Zero at Harvard’s Graduate School of Education has created a collection of Core Thinking Routines as part of their Visible Thinking Project. Teachers can view the entire collection on the Project Zero website (https://pz.harvard.edu/thinking-routines#CoreThinkingRoutines), where each routine is described in detail (e.g., purpose, application, launch) in both English and Spanish.

These routines encourage students to be intentional thinkers.

What do they know or notice?
What is their perspective or position on an issue or idea?
How can they support their position or thinking?
What do they wonder? What are they confused about?
How has their thinking changed? What caused that change?

Subject:
Education
English Language Arts
Math
Science
Social Studies
Material Type:
Activity/Lab
Author:
Harvard Graduate School of Education
Date Added:
10/01/2020
Powering Smallsburg
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students act as power engineers by specifying the power plants to build for a community. They are given a budget, an expected power demand from the community, and different power plant options with corresponding environmental effects. They can work through this scenario as a class or on their own.

Subject:
Environmental Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Frank Burkholder
Janet Yowell
Malinda Schaefer Zarske
Date Added:
10/14/2015
Powering the Satellite
Read the Fine Print
Rating
0.0 stars

This is an activity about solar energy. Learners will first use computers to research and learn how solar panels convert sunlight into electricity. Next, they will calculate the surface area of solar panels board a satellite and their total power generated in various positions of the satellite, given the dimension of the panels. After, learners will organize and write a report summarizing the information about the MMS mission satellites. This activity requires student access to internet accessible computers. This is lesson four as part of the MMS Mission Educator's Instructional Guide.

Subject:
Math
Physics
Science
Material Type:
Activity/Lab
Assessment
Lesson
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
10/05/2018
Powering the U.S.
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson provides students with an overview of the electric power industry in the United States. Students also become familiar with the environmental impacts associated with a variety of energy sources.

Subject:
Environmental Science
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Frank Burkholder
Janet Yowell
Malinda Schaefer Zarske
Date Added:
09/18/2014
The Power of Mechanical Advantage
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the mechanical advantage offered by pulleys in an interactive and game-like manner. By virtue of the activity's mechatronic presentation, they learn to study a mechanical system not as a static image, but rather as a dynamic system that is under their control. Using a LEGO® MINDSTORMS® robotics platform and common hardware items, students build a mechanized elevator system. The ability to control different parameters (such as motor power, testing load and pulley arrangement) enables the teacher, as well as the students, to emphasize and reinforce particular aspects/effects of mechanical advantage.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carlo Yuvienco
Janet Yowell
Date Added:
09/18/2014