Student teams investigate the properties of electromagnets. They create their own small …
Student teams investigate the properties of electromagnets. They create their own small electromagnet and experiment with ways to change its strength to pick up more paper clips. Students learn about ways that engineers use electromagnets in everyday applications.
This magnetism teacher‰Ûªs guide is one of four activity guides‰ÛÓplus a background …
This magnetism teacher‰Ûªs guide is one of four activity guides‰ÛÓplus a background guide for teachers‰ÛÓthat provide students with the opportunity to build on science concepts related to Earth‰Ûªs magnetism and its changes, as detected by THEMIS magnetometers located in schools across the U.S. The four activity guides have been used in different types of classes, from physical science and physics classes, to geology classes and astronomy classes. The excitement of actually participating in the THEMIS project helps motivate the students to learn challenging physical science concepts.
The background guide for teachers, the THEMIS GEONS Users Guide describes the important role that terrestrial magnetism plays in shaping a number of important Earth systems. It also explains the basic operating principles behind magnetometers‰ÛÓparticularly the system you are now in the process of using to investigate magnetic storms at your school.
Earth‰Ûªs Magnetic Personality is the fourth and final guide, which was developed with the goal that students can work directly with the THEMIS magnetometer data. The guide covers vectors, the x-y-z magnetometer plots, creating a prediction for aurora using the magnetometer data, calculating the total magnetic field strength and observing it over months, and the waves in Earth‰Ûªs magnetic field excited by large magnetic storms.
In this introduction to light energy, students learn about reflection and refraction …
In this introduction to light energy, students learn about reflection and refraction as they learn that light travels in wave form. Through hands-on activities, they see how prisms, magnifying glasses and polarized lenses work. They also gain an understanding of the colors of the rainbow as the visible spectrum, each color corresponding to a different wavelength.
This is a lesson about measuring magnetic field directions of Earth and …
This is a lesson about measuring magnetic field directions of Earth and in the environment. First, learners go outside, far away from buildings, power lines, or anything electrical or metal, and use compasses to identify magnetic North. Next, they use the compasses to probe whether there are any sources of magnetic fields in the local environment, including around electronic equipment such as a CD player and speakers. This is the first lesson in the second session of the Exploring Magnetism teacher guide.
Using plastic straws, wire, batteries and iron nails, student teams build and …
Using plastic straws, wire, batteries and iron nails, student teams build and test two versions of electromagnets one with and one without an iron nail at its core. They test each magnet's ability pick up loose staples, which reveals the importance of an iron core to the magnet's strength. Students also learn about the prevalence and importance of electromagnets in their everyday lives.
Students explore electromagnetism and engineering concepts using optimization techniques to design an …
Students explore electromagnetism and engineering concepts using optimization techniques to design an efficient magnetic launcher. Groups start by algebraically solving the equations of motion for the velocity at the time when a projectile leaves a launcher. Then they test three different launchers, in which the number of coils used is different, measuring the range and comparing the three designs. Based on these observations, students record similarities and differences and hypothesize on the underling physics. They are introduced to Faraday's law and Lenz's law to explain the physics behind the launcher. Students brainstorm how these principals might be applied to real-world engineering problems.
Students learn about magnets and how they are formed. They investigate the …
Students learn about magnets and how they are formed. They investigate the properties of magnets and how engineers use magnets in technology. Specifically, students learn about magnetic memory storage, which is the reading and writing of data information using magnets, such as in computer hard drives, zip disks and flash drives.
The following resource contains the external assets (or resources) to accompany the …
The following resource contains the external assets (or resources) to accompany the Sask DLC Electrical 20 course. Please note that this is not the content of the course, but the external assets used to support and deliver it.
This is an activity about the basic properties of magnets and magnetism. …
This is an activity about the basic properties of magnets and magnetism. Learners explore concepts such as magnetic fields and polarity, which form the basic ingredients of a study of Earth's magnetic field and the technology of magnetometers. Materials needed include bar magnets and paper clips. This is Activity 1 of Exploring Magnetism: A Teacher's Magnetism Activity Guide.
Broadcast radio waves from KPhET. Wiggle the transmitter electron manually or have …
Broadcast radio waves from KPhET. Wiggle the transmitter electron manually or have it oscillate automatically. Display the field as a curve or vectors. The strip chart shows the electron positions at the transmitter and at the receiver.
Open Educational Resources (OER) for K-12 Science including - lessons, videos, simulations, …
Open Educational Resources (OER) for K-12 Science including - lessons, videos, simulations, professional learning and on-demand teacher support.
*more is being developed so keep checking for new materials* *CHECK GRADES OTHER THAN WHAT YOU TEACH TO FIND ADDITIONAL SK LESSON TOPICS*
"We’ve made our curriculum free for all educators because high quality instructional materials and professional learning can bridge the opportunity gap for all students. The units underwent a rigorous 18-month development process with teacher and student voices across the country informing the selection of the phenomena and each unit’s storyline. Using our curriculum, teachers have seen their students strengthen their ability to solve problems, become more curious about the world around them, and be excited to discover the wonders of science in their classrooms."
Students learn more about magnetism, and how magnetism and electricity are related …
Students learn more about magnetism, and how magnetism and electricity are related in electromagnets. They learn the fundamentals about how simple electric motors and electromagnets work. Students also learn about hybrid gasoline-electric cars and their advantages over conventional gasoline-only-powered cars.
Students teams each use a bar magnet, sheet of paper and iron …
Students teams each use a bar magnet, sheet of paper and iron shavings to reveal the field lines as they travel around a magnet. They repeat the activity with an electromagnet made by wrapping thin wire around a nail and connecting either wire end to a battery. They see that the current flowing through a wire produces a magnetic field around the wire and that this magnetic field induced by electricity is no different than that produced by a bar magnet. The experience helps to solidify the idea that electricity and magnetism are deeply interrelated.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.