In this module, students reconnect with and deepen their understanding of statistics …
In this module, students reconnect with and deepen their understanding of statistics and probability concepts first introduced in Grades 6, 7, and 8. Students develop a set of tools for understanding and interpreting variability in data, and begin to make more informed decisions from data. They work with data distributions of various shapes, centers, and spreads. Students build on their experience with bivariate quantitative data from Grade 8. This module sets the stage for more extensive work with sampling and inference in later grades.
Find the rest of the EngageNY Mathematics resources at https://archive.org/details/engageny-mathematics.
Students learn a simple technique for quantifying the amount of photosynthesis that …
Students learn a simple technique for quantifying the amount of photosynthesis that occurs in a given period of time, using a common water plant (Elodea). They can use this technique to compare the amounts of photosynthesis that occur under conditions of low and high light levels. Before they begin the experiment, however, students must come up with a well-worded hypothesis to be tested. After running the experiment, students pool their data to get a large sample size, determine the measures of central tendency of the class data, and then graph and interpret the results.
Students use U.S. Geological Survey (USGS) real-time, real-world seismic data from around …
Students use U.S. Geological Survey (USGS) real-time, real-world seismic data from around the planet to identify where earthquakes occur and look for trends in earthquake activity. They explore where and why earthquakes occur, learning about faults and how they influence earthquakes. Looking at the interactive maps and the data, students use Microsoft® Excel® to conduct detailed analysis of the most-recent 25 earthquakes; they calculate mean, median, mode of the data set, as well as identify the minimum and maximum magnitudes. Students compare their predictions with the physical data, and look for trends to and patterns in the data. A worksheet serves as a student guide for the activity.
Over 270 free printable math posters or maths charts suitable for interactive …
Over 270 free printable math posters or maths charts suitable for interactive whiteboards, classroom displays, math walls, display boards, student handouts, homework help, concept introduction and consolidation and other math reference needs.
This site uses American standards, so filter by SKILL, not grade to …
This site uses American standards, so filter by SKILL, not grade to find what you need.
This site allows you to differentiate for a wide variety of needs quickly!
Create activities for PAPER or ONLINE learning. This can be used in the classroom and for distance learning. *daily review creator! *create mixed or spiral reviews to foster mastery *create practice pages to reinforce skills *print cheat sheets to explain skills to students *create flashcards for review *create modified versions of activities *create quizzes *multiple languages available *drills
*make your own spelling lists using word families or use pre-made lists
Math Antics has amazing videos to explain concepts for Math. The videos …
Math Antics has amazing videos to explain concepts for Math. The videos are very clear and explicit and students love them. All of the video lessons are FREE.
There are also follow up exercises, videos and worksheets that students can use to solidify learning - but you will be required to pay $20 a year to access these. hat being said, it's super useful even without a paid account!
The videos are organized by strand, and all are free.
This article explores how statistics can be interpreted in different ways to …
This article explores how statistics can be interpreted in different ways to yield different conclusions. It describes the outcome and discussion of two class activities. In the first, the results are interpreted to "show" that taking a group rather than an individual perspective is ultimately beneficial to the individual. In the second, a variation is added "showing" that telling the truth is better that lying. This resource is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications.
Discover Mathigon, the Mathematical Playground. Learning mathematics has never been so interactive …
Discover Mathigon, the Mathematical Playground. Learning mathematics has never been so interactive and fun! Check out: Polypad - Virtual manipulatives, dynamic geometry, graph plotting, data science and more: explore the ultimate mathematical playground! Multiplication by Heart - These beautiful flash cards use spaced repetition to teach multiplication facts. Achieve fluency with just five minutes of practice per day! Activities - A selection of our favourite mathematical puzzles and problems. Most are simple to understand, but the solutions require clever and unconventional thinking. Factris - A fun game that teaches about simple arithmetic Course Library - Mathigon's innovative courses cover everything from fractions and trigonometry to graph theory, cryptography, prime numbers and fractals. Puzzles, Activities and Lesson Plans - Student Explorations/Activities for students to complete ; Fully developed lessons plans ; Ready to play puzzles and games ; Teaching ideas using Polypad to explore new ideas; Tutorials - Learn how to use Polypad Almanac of Interesting Numbers And much more!
Today we’re going to talk about measures of central tendency - those …
Today we’re going to talk about measures of central tendency - those are the numbers that tend to hang out in the middle of our data: the mean, the median, and mode. All of these numbers can be called “averages” and they’re the numbers we tend to see most often - whether it’s in politics when talking about polling or income equality to batting averages in baseball (and cricket) and Amazon reviews. Averages are everywhere so today we’re going to discuss how these measures differ, how their relationship with one another can tell us a lot about the underlying data, and how they are sometimes used to mislead.
Students experience data collection, analysis and inquiry in this LEGO® MINDSTORMS® NXT …
Students experience data collection, analysis and inquiry in this LEGO® MINDSTORMS® NXT -based activity. They measure the position of an oscillating platform using a ultrasonic sensor and perform statistical analysis to determine the mean, mode, median, percent difference and percent error for the collected data.
Students learn about the statistical analysis of measurements and error propagation, reviewing …
Students learn about the statistical analysis of measurements and error propagation, reviewing concepts of precision, accuracy and error types. This is done through calculations related to the concept of density. Students work in teams to each measure the dimensions and mass of five identical cubes, compile the measurements into small data sets, calculate statistics including the mean and standard deviation of these measurements, and use the mean values of the measurements to calculate density of the cubes. Then they use this calculated density to determine the mass of a new object made of the same material. This is done by measuring the appropriate dimensions of the new object, calculating its volume, and then calculating its mass using the density value. Next, the mass of the new object is measured by each student group and the standard deviation of the measurements is calculated. Finally, students determine the accuracy of the calculated mass by comparing it to the measured mass, determining whether the difference in the measurements is more or less than the standard deviation.
The following file contains the assets (or resources) to accompany the Sask …
The following file contains the assets (or resources) to accompany the Sask DLC Mathematics Foundations 20. Please note that this is not the content of the course, but the assets used to support and deliver it. The files are organized in a zipped folder. You can download it and extract the files. Links are also provided to other materials like videos and other suggested resources.
Students apply pre-requisite statistics knowledge and concepts learned in an associated lesson …
Students apply pre-requisite statistics knowledge and concepts learned in an associated lesson to a real-world state-of-the-art research problem that asks them to quantitatively analyze the effectiveness of different cracked steel repair methods. As if they are civil engineers, students statistically analyze and compare 12 sets of experimental data from seven research centers around the world using measurements of central tendency, five-number summaries, box-and-whisker plots and bar graphs. The data consists of the results from carbon-fiber-reinforced polymer patched and unpatched cracked steel specimens tested under the same stress conditions. Based on their findings, students determine the most effective cracked steel repair method, create a report, and present their results, conclusions and recommended methods to the class as if they were presenting to the mayor and city council. This activity and its associated lesson are suitable for use during the last six weeks of the AP Statistics course; see the topics and timing note for details.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.