In a class demonstration, the teacher places different pill types ("chalk" pill, …
In a class demonstration, the teacher places different pill types ("chalk" pill, gel pill, and gel tablet) into separate glass beakers of vinegar, representing human stomach acid. After 20-30 minutes, the pills dissolve. Students observe which dissolve the fastest, and discuss the remnants of the various pills. What they learn contributes to their ongoing objective to answer the challenge question presented in lesson 1 of this unit.
After a brief history of plastics, students look more closely as some …
After a brief history of plastics, students look more closely as some examples from the abundant types of plastics found in our day-to-day lives. They are introduced to the mechanical properties of plastics, including their stress-strain relationships, which determine their suitability for different industrial and product applications. These physical properties enable plastics to be fabricated into a wide range of products. Students learn about the different roles that plastics play in our lives, Young's modulus, and the effects that plastics have on our environment. Then students act as industrial engineers, conducting tests to compare different plastics and performing a cost-benefit analysis to determine which are the most cost-effective for a given application, based on their costs and measured physical properties.
Explore the properties of quantum "particles" bound in potential wells. See how …
Explore the properties of quantum "particles" bound in potential wells. See how the wave functions and probability densities that describe them evolve (or don't evolve) over time.
When do photons, electrons, and atoms behave like particles and when do …
When do photons, electrons, and atoms behave like particles and when do they behave like waves? Watch waves spread out and interfere as they pass through a double slit, then get detected on a screen as tiny dots. Use quantum detectors to explore how measurements change the waves and the patterns they produce on the screen.
Broadcast radio waves from KPhET. Wiggle the transmitter electron manually or have …
Broadcast radio waves from KPhET. Wiggle the transmitter electron manually or have it oscillate automatically. Display the field as a curve or vectors. The strip chart shows the electron positions at the transmitter and at the receiver.
Learn about different types of radiometric dating, such as carbon dating. Understand …
Learn about different types of radiometric dating, such as carbon dating. Understand how decay and half life work to enable radiometric dating to work. Play a game that tests your ability to match the percentage of the dating element that remains to the age of the object.
Create your own sandwich and then see how many sandwiches you can …
Create your own sandwich and then see how many sandwiches you can make with different amounts of ingredients. Do the same with chemical reactions. See how many products you can make with different amounts of reactants. Play a game to test your understanding of reactants, products and leftovers. Can you get a perfect score on each level?
Explore what makes a reaction happen by colliding atoms and molecules. Design …
Explore what makes a reaction happen by colliding atoms and molecules. Design experiments with different reactions, concentrations, and temperatures. When are reactions reversible? What affects the rate of a reaction?
Through this lab, students are introduced to energy sciences as they explore …
Through this lab, students are introduced to energy sciences as they explore redox reactions and how hydrogen fuel cells turn the energy released when hydrogen and oxygen are combined into electrical energy that can be read on a standard multimeter. They learn about the energy stored in bonds and how, by controlling the reaction, this energy can be turned into more or less useful forms.
Watch a reaction proceed over time. How does total energy affect a …
Watch a reaction proceed over time. How does total energy affect a reaction rate? Vary temperature, barrier height, and potential energies. Record concentrations and time in order to extract rate coefficients. Do temperature dependent studies to extract Arrhenius parameters. This simulation is best used with teacher guidance because it presents an analogy of chemical reactions.
How did Rutherford figure out the structure of the atom without being …
How did Rutherford figure out the structure of the atom without being able to see it? Simulate the famous experiment in which he disproved the Plum Pudding model of the atom by observing alpha particles bouncing off atoms and determining that they must have a small core.
This site offers a collection of hundreds of free K-12 STEM resources, …
This site offers a collection of hundreds of free K-12 STEM resources, from standalone models and simulations to short activities and week long sequences of curriculum materials. Filter by type of subject, activity type and grade. Searchable subjects include: physics and chemistry, life science, engineering, earth and space, and math.
Add different salts to water, then watch them dissolve and achieve a …
Add different salts to water, then watch them dissolve and achieve a dynamic equilibrium with solid precipitate. Compare the number of ions in solution for highly soluble NaCl to other slightly soluble salts. Relate the charges on ions to the number of ions in the formula of a salt. Calculate Ksp values.
Students build a saltwater circuit, which is an electrical circuit that uses …
Students build a saltwater circuit, which is an electrical circuit that uses saltwater as part of the circuit. Students investigate the conductivity of saltwater, and develop an understanding of how the amount of salt in a solution impacts how much electrical current flows through the circuit. They learn about one real-world application of a saltwater circuit — as a desalination plant tool to test for the removal of salt from ocean water.
Welcome to Secondary Science Implementation Support. This site from the Ministry of …
Welcome to Secondary Science Implementation Support. This site from the Ministry of Education in SK has a huge collection of excellent supports for High School Science.
There are currently over 500 supports available.
Select "Support Materials" from the menu on the left.
This site houses materials developed to support teachers' implementation of secondary science courses. The Support Materials section contains materials that have been developed and refined by each of the course-specific Secondary Implementation Support teams. Teachers are free to use these materials as they wish. Any teacher may post questions in the Discussion Board and/or share their materials. Note that copyright must be respected in all cases.
Support materials for Science 10, Health Science 20, Environmental Science 20, Physical Science 20, Chemistry 30, Physics 30, Biology 30, Earth Science 30, Computer Science 20 and Computer Science 30 have been posted.
You must be logged into Blackboard to see the supports.
This resource can help you access Blackboard as a SK Teacher if you are having difficulty: https://s3.amazonaws.com/sws.oercommons.org/media/editor/30/Accessing_Blackboard.pdf (Copy and paste this url into a browser).
Please note: You will need to click "Open this in a new window" to view the resource when the message appears.
Students learn how to classify materials as mixtures, elements or compounds and …
Students learn how to classify materials as mixtures, elements or compounds and identify the properties of each type. The concept of separation of mixtures is also introduced since nearly every element or compound is found naturally in an impure state such as a mixture of two or more substances, and it is common that chemical engineers use separation techniques to separate mixtures into their individual components. For example, the separation of crude oil into purified hydrocarbons such as natural gas, gasoline, diesel, jet fuel and/or lubricants.
Students will design a method that applies various chemistry techniques to separate …
Students will design a method that applies various chemistry techniques to separate a mixture by physical means to simulate how a scientist would mitigate contamination in a stream due to run-off.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.