Updating search results...

Search Resources

21 Results

View
Selected filters:
  • momentum
Bouncing Balls
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine how different balls react when colliding with different surfaces, giving plenty of opportunity for them to see the difference between elastic and inelastic collisions, learn how to calculate momentum, and understand the principle of conservation of momentum.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
10/14/2015
Bouncing Balls (for High School)
Read the Fine Print
Educational Use
Rating
0.0 stars

In this activity, students examine how different balls react when colliding with different surfaces. Also, they will have plenty of opportunity to learn how to calculate momentum and understand the principle of conservation of momentum.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Ben Sprague
Chris Yakacki
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
10/14/2015
Collision Lab
Read the Fine Print
Rating
0.0 stars

Investigate collisions on an air hockey table. Set up your own experiments: vary the number of discs, masses and initial conditions. Is momentum conserved? Is kinetic energy conserved? Vary the elasticity and see what happens.

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Ariel Paul
Jon Olson
Kathy Perkins
Mike Dubson
Mindy Gratny
Sam Reid
Trish Loeblein
Date Added:
10/01/2010
Collisions and Momentum: Bouncing Balls
Read the Fine Print
Educational Use
Rating
0.0 stars

As a continuation of the theme of potential and kinetic energy, this lesson introduces the concepts of momentum, elastic and inelastic collisions. Many sports and games, such as baseball and ping-pong, illustrate the ideas of momentum and collisions. Students explore these concepts by bouncing assorted balls on different surfaces and calculating the momentum for each ball.

Subject:
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Bailey Jones
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Matt Lundberg
Date Added:
09/18/2014
Crash! Bang!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the physical force of linear momentum movement in a straight line by investigating collisions. They learn an equation that engineers use to describe momentum. Students also investigate the psychological phenomenon of momentum; they see how the "big mo" of the bandwagon effect contributes to the development of fads and manias, and how modern technology and mass media accelerate and intensify the effect.

Subject:
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Date Added:
09/18/2014
Crash Science in the Classroom
Rating
0.0 stars

"Sponsored by the the Insurance Institute for Highway Safety, this resource provides free educational resources to help you learn or teach about the science of car crashes. Videos, demonstrations and teacher-developed, classroom-tested activities aligned to the latest standards bring crash safety STEM applications to grade 5-12 classrooms." MIT

Start by watching the "about" video. Follow "How it Works"

You can select Lessons on the top menu or more videos.

VIEW, DO, EXPLORE, UTILIZE

Subject:
Physical Science
Physics
Science
Material Type:
Activity/Lab
Lesson
Author:
IHS-HLDI
Date Added:
04/30/2024
Money Moccasins Online Mini Courses- momentum presented by Indigenous Financial Empowerment Facilitator Theodora WarriorHealy
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Free online courses Money Moccasins- momentum presented by Indigenous Financial Empowerment Facilitator Theodora WarriorHealy at https://courses.momentum.org/account/my-courses# You need to sign up to get an account and then work through the courses. The goal of the program is to give participants more confidence when they walk into a bank or talk to a financial advisor. Opening accounts, RRSPs for kids and tax-free savings accounts are just some of the topics discussed. The program uses a combination of storytelling and knowledge sharing that is a common way for indigenous people to learn from each other. In this case they sit together and talk about finances and gain financial empowerment that a lot of people have not had access to before. Participants who attend all five workshops (Assets, Budget, Banking, Credit, and Consumerism) receive a certificate of completion that can be applied to their credit report.

Subject:
Financial Literacy
Indigenous Perspectives
Material Type:
Homework/Assignment
Lesson
Unit of Study
Author:
Cindy Lowe
Date Added:
03/13/2024
Physics 30 - Unit 4
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Lessons, worksheets and keys for Physics 30: Unit 4 - The Conservation Laws.

Subject:
Physics
Author:
Distance Learning Centre
Date Added:
06/13/2018
The Physics Classroom
Rating
0.0 stars

A wealth of resources for teaching and learning about physics!

Tutorials, interactives, videos, multimedia info, concept builders, concept checkers, question bank HELP and more!

Subject:
Physics
Science
Material Type:
Activity/Lab
Lesson
Primary Source
Author:
Physics Classroom
Date Added:
04/30/2024
Puttin' It All Together
Read the Fine Print
Educational Use
Rating
0.0 stars

On the topic of energy related to motion, this summary lesson is intended to tie together the concepts introduced in the previous four lessons and show how the concepts are interconnected in everyday applications. A hands-on activity demonstrates this idea and reinforces students' math skills in calculating energy, momentum and frictional forces.

Subject:
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Denise W. Carlson
Malinda Schaefer Zarske
Date Added:
09/18/2014
Ramp and Review
Read the Fine Print
Educational Use
Rating
0.0 stars

In this hands-on activity rolling a ball down an incline and having it collide into a cup the concepts of mechanical energy, work and power, momentum, and friction are all demonstrated. During the activity, students take measurements and use equations that describe these energy of motion concepts to calculate unknown variables, and review the relationships between these concepts.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Denise W. Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Ramp and Review (for High School)
Read the Fine Print
Educational Use
Rating
0.0 stars

In this hands-on activity rolling a ball down an incline and having it collide into a cup the concepts of mechanical energy, work and power, momentum, and friction are all demonstrated. During the activity, students take measurements and use equations that describe these energy of motion concepts to calculate unknown variables and review the relationships between these concepts.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Sprague
Chris Yakacki
Denise W. Carlson
Janet Yowell
Malinda Schaefer Zarske
Date Added:
10/14/2015
Science Open Educational Resources - OpenSciEd (K-12)
Unrestricted Use
Public Domain
Rating
0.0 stars

Open Educational Resources (OER) for K-12 Science including - lessons, videos, simulations, professional learning and on-demand teacher support.

*more is being developed so keep checking for new materials*
*CHECK GRADES OTHER THAN WHAT YOU TEACH TO FIND ADDITIONAL SK LESSON TOPICS*

"We’ve made our curriculum free for all educators because high quality instructional materials and professional learning can bridge the opportunity gap for all students. The units underwent a rigorous 18-month development process with teacher and student voices across the country informing the selection of the phenomena and each unit’s storyline. Using our curriculum, teachers have seen their students strengthen their ability to solve problems, become more curious about the world around them, and be excited to discover the wonders of science in their classrooms."

Subject:
Biology
Chemistry
Environmental Science
Health & Fitness
Health Education
Health Science
Physical Science
Physics
Science
Material Type:
Activity/Lab
Lesson
Simulation
Unit of Study
Author:
OpenSciEd
Date Added:
09/06/2024
Secondary Science Implementation Support in Saskatchewan
Rating
0.0 stars

Welcome to Secondary Science Implementation Support. This site from the Ministry of Education in SK has a huge collection of excellent supports for High School Science.

There are currently over 500 supports available.

Select "Support Materials" from the menu on the left.

This site houses materials developed to support teachers' implementation of secondary science courses. The Support Materials section contains materials that have been developed and refined by each of the course-specific Secondary Implementation Support teams. Teachers are free to use these materials as they wish.
Any teacher may post questions in the Discussion Board and/or share their materials. Note that copyright must be respected in all cases.

Support materials for Science 10, Health Science 20, Environmental Science 20, Physical Science 20, Chemistry 30, Physics 30, Biology 30, Earth Science 30, Computer Science 20 and Computer Science 30 have been posted.

You must be logged into Blackboard to see the supports.

This resource can help you access Blackboard as a SK Teacher if you are having difficulty: https://s3.amazonaws.com/sws.oercommons.org/media/editor/30/Accessing_Blackboard.pdf (Copy and paste this url into a browser).

Please note: You will need to click "Open this in a new window" to view the resource when the message appears.

Subject:
Biology
Career & Work Exploration
Chemistry
Computer Science
Environmental Science
Health Science
Physical Science
Physics
Practical & Applied Arts
Science
Material Type:
Activity/Lab
Homework/Assignment
Lesson
Teaching/Learning Strategy
Unit of Study
Author:
SK Science Implementation Support Team
Saskatchewan Ministry of Education
Date Added:
05/06/2019
Skateboard Disaster
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine collisions between two skateboards with different masses to learn about conservation of momentum in collisions.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Super Spinners!
Read the Fine Print
Educational Use
Rating
0.0 stars

Use this hands-on activity to demonstrate rotational inertia, rotational speed, angular momentum, and velocity. Students build at least two simple spinners to conduct experiments with different mass distributions and shapes, as they strive to design and build the spinner that spins the longest.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
Water Bottle Rockets
Read the Fine Print
Educational Use
Rating
0.0 stars

What makes rockets fly straight? What makes rockets fly far? Why use water to make the rocket fly? Students are challenged to design and build rockets from two-liter plastic soda bottles that travel as far and straight as possible or stay aloft as long as possible. Guided by the steps of the engineering design process, students first watch a video that shows rocket launch failures and then participate in three teacher-led mini-activities with demos to explore key rocket design concepts: center of drag, center of mass, and momentum and impulse. Then the class tests four combinations of propellants (air, water) and center of mass (weight added fore or aft) to see how these variables affect rocket distance and hang time. From what they learn, student pairs create their own rockets from plastic bottles with cardboard fins and their choices of propellant and center of mass placement, which they test and refine before a culminating engineering field day competition. Teams design for maximum distance or hang time; adding a parachute is optional. Students learn that engineering failures during design and testing are just steps along the way to success.

Subject:
Physical Science
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Duff Harrold
Sara Pace
Date Added:
05/07/2018