Updating search results...

Search Resources

37 Results

View
Selected filters:
  • voltage
Many Paths
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the composition and practical application of parallel circuitry, compared to series circuitry. Students design and build parallel circuits and investigate their characteristics, and apply Ohm's law.

Subject:
Electrical & Electronics
Practical & Applied Arts
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Daria Kotys-Schwartz
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora Thompson
Date Added:
09/18/2014
Maximum Power Point
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn how to find the maximum power point (MPP) of a photovoltaic (PV) panel in order to optimize its efficiency at creating solar power. They also learn about real-world applications and technologies that use this technique, as well as Ohm's law and the power equation, which govern a PV panel's ability to produce power.

Subject:
Environmental Science
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abby Watrous
Jack Baum
Malinda Schaefer Zarske
Stephen Johnson
William Surles
Date Added:
09/18/2014
Open Access Assets for Science 9
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

The following file contains the assets (or resources) to accompany the Sask DLC Grade 9 Science. Please note that this is not the content of the course, but the assets used to support and deliver it. The files are organized in a zipped folder. You can download it and extract the files. Links are also provided to other materials like videos and other suggested resources. 

Subject:
English Language Arts
Science
Material Type:
Activity/Lab
Lesson
Open Access Asset
Unit of Study
Author:
Sask DLC
Date Added:
09/12/2023
The Path of Electrons
Read the Fine Print
Educational Use
Rating
0.0 stars

Students engage in an interactive "hot potato" demonstration to gain an appreciation for the flow of electrons through a circuit. Students role play the different parts of a simple circuit and send small items representing electrons (paper or candy pieces) through the circuit.

Subject:
Electrical & Electronics
Practical & Applied Arts
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jeff Lyng
Malinda Schaefer Zarske
Sharon D. Perez-Suarez
Date Added:
10/14/2015
PhET Simulations
Rating
0.0 stars

PhET Sims are now available in HTML5 as well!

Simulations can be sorted by subject area or grade. This is very helpful.

PhET is a collection of interactive computer simulations for teaching and learning physics, chemistry, math, and other sciences.

Simulations can be used directly on the site or downloaded and used that way.

The simulations are animated, interactive, and game-like environments where students learn through exploration. They emphasize the connections between real-life and the underlying science. These great activities help students visualize abstract concepts!

Subject:
Biology
Chemistry
Math
Physical Science
Physics
Science
Material Type:
Activity/Lab
GAP 4
GAP 5
GAP 6
Game
Simulation
Teaching/Learning Strategy
Author:
PhET Interactive Simulations
Date Added:
03/01/2019
Physical Computing Using Arduinos: Making an LED Blink and Fade
Read the Fine Print
Educational Use
Rating
0.0 stars

Students download the software needed to create Arduino programs and make sure their Arduino microcontrollers work correctly. Then, they connect an LED to the Arduino and type up and upload programs to the Arduino board to 1) make the LED blink on and off and 2) make the LED fade (brighten and then dim). Throughout, students reflect on what they've accomplished by answering questions and modifying the original programs and circuits in order to achieve new outcomes. A design challenge gives students a chance to demonstrate their understanding of actuators and Arduinos; they design a functioning system using an Arduino, at least three actuators and either a buzzer or toy motor. For their designs, students sketch, create and turn in a user's manual for the system (text description, commented program, detailed hardware diagram). Numerous worksheets and handouts are provided.

Subject:
Computer Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Lisa Ali
Michael Zitolo
Date Added:
10/14/2015
Pointing at Maximum Power for PV
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams measure voltage and current in order to determine the power output of a photovoltaic (PV) panel. They vary the resistance in a simple circuit connected to the panel to demonstrate the effects on voltage, current, and power output. After collecting data, they calculate power for each resistance setting, creating a graph of current vs. voltage, and indentifying the maximum power point.

Subject:
Electrical & Electronics
Practical & Applied Arts
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abby Watrous
Eszter Horanyi
Jack Baum
Malinda Schaefer Zarske
Stephen Johnson
William Surles
Date Added:
09/18/2014
Potato Power
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use potatoes to light an LED clock (or light bulb) as they learn how a battery works in a simple circuit and how chemical energy changes to electrical energy. As they learn more about electrical energy, they better understand the concepts of voltage, current and resistance.

Subject:
Electrical & Electronics
Practical & Applied Arts
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Janet Yowell
Jeff Lyng
Malinda Schaefer Zarske
Sharon D. Perez-Suarez
Date Added:
10/14/2015
The Power of Food
Read the Fine Print
Educational Use
Rating
0.0 stars

Students imagine they are stranded on an island and must create the brightest light possible with the meager supplies they have on hand in order to gain the attention of a rescue airplane. In small groups, students create circuits using items in their "survival kits" to create maximum voltage, measured with a multimeter and two LED lights. To complete the activity, students act as engineers by using the given materials to create circuits that produces the highest voltage and light up the most LED lights. They apply their knowledge of how voltage differs in a series circuit and a parallel circuit to design their solutions.

Subject:
Electrical & Electronics
Practical & Applied Arts
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jackie Swanson
Janet Yowell
Date Added:
09/18/2014
Racing with the Sun - Creating a Solar Car
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use engineering design principles to construct and test a fully solar powered model car. Several options exist, though we recommend the "Junior Solar Sprint" (JSS) Car Kits that can be purchased with direction from the federal government. Using the JSS kit from Solar World, students are provided with a photovoltaic panel that produces ~3V at ~3W. An optional accessory kit also from Solar World includes wheels, axles and drive gears. A chassis must be built additionally. Balsa wood provides an excellent option though many others are available. The testing of the solar car culminates in a solar race between classmates.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Rahmin Sarabi
Date Added:
09/18/2014
A Robotic Hand with a Gentle Touch
Read the Fine Print
Educational Use
Rating
0.0 stars

Students groups act as NASA/GM engineers challenged to design, build and test robotic hands, which are tactile feedback systems made from cloth gloves and force sensor circuits. Student groups construct force sensor circuits using electric components and FlexiForce sensors to which resistance changes based on the applied force. They conduct experiments to find the mathematical relationship between the force applied to the sensor and the output voltages of the circuit. They take several measurements force vs. resistance, force vs. voltage and use the data to find the best fit curve models for the sensor. Different weights applied to the sensor are used as a scalable force. Students use traditional methods and current technology (calculators) to plot the collected data and define the curve equations. Students test their gloves and use a line of best fit to determine the minimum force required to crack an egg held between the index finger and thumb. A PowerPoint(TM) file and many student handouts are included.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Luis Avila
Date Added:
10/14/2015
Saltwater Circuit
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build a saltwater circuit, which is an electrical circuit that uses saltwater as part of the circuit. Students investigate the conductivity of saltwater, and develop an understanding of how the amount of salt in a solution impacts how much electrical current flows through the circuit. They learn about one real-world application of a saltwater circuit — as a desalination plant tool to test for the removal of salt from ocean water.

Subject:
Chemistry
Environmental Science
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Denise W. Carlson
Juan Ramirez Jr.
Stephanie Rivale
Date Added:
09/18/2014
Sensing Air Pollution
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about electricity and air pollution while building devices to measure volatile organic compounds (VOC) by attaching VOC sensors to prototyping boards. In the second part of the activity, students evaluate the impact of various indoor air pollutants using the devices they made.

Subject:
Environmental Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Berkeley Almand
Mike Hannigan
Date Added:
09/18/2014
Solar Angles and Tracking Systems
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the daily and annual cycles of solar angles used in power calculations to maximize photovoltaic power generation. They gain an overview of solar tracking systems that improve PV panel efficiency by following the sun through the sky.

Subject:
Electrical & Electronics
Practical & Applied Arts
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Abby Watrous
Eszter Horanyi
Malinda Schaefer Zarske
William Surles
Date Added:
09/18/2014
Two-Cell Battery
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build their own two-cell batteries. They also determine which electrolyte solution is best suited for making batteries.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Daria Kotys-Schwartz
Denise W. Carlson
Joe Friedrichsen
Malinda Schaefer Zarske
Sabre Duren
Xochitl Zamora Thompson
Date Added:
09/18/2014
Whose Field Line Is It, Anyway?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students teams each use a bar magnet, sheet of paper and iron shavings to reveal the field lines as they travel around a magnet. They repeat the activity with an electromagnet made by wrapping thin wire around a nail and connecting either wire end to a battery. They see that the current flowing through a wire produces a magnetic field around the wire and that this magnetic field induced by electricity is no different than that produced by a bar magnet. The experience helps to solidify the idea that electricity and magnetism are deeply interrelated.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Dayna Martinez
James Cooper
Mandek Richardson
Patricio Rocha
Tapas K. Das
Date Added:
09/18/2014