Updating search results...

Search Resources

87 Results

View
Selected filters:
  • gravity
Pendulum Lab
Read the Fine Print
Rating
0.0 stars

Play with one or two pendulums and discover how the period of a simple pendulum depends on the length of the string, the mass of the pendulum bob, and the amplitude of the swing. It's easy to measure the period using the photogate timer. You can vary friction and the strength of gravity. Use the pendulum to find the value of g on planet X. Notice the anharmonic behavior at large amplitude.

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Trish Loeblein
Date Added:
10/27/2008
Physics of Roller Coasters
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore the physics utilized by engineers in designing today's roller coasters, including potential and kinetic energy, friction, and gravity. First, students learn that all true roller coasters are completely driven by the force of gravity and that the conversion between potential and kinetic energy is essential to all roller coasters. Second, they also consider the role of friction in slowing down cars in roller coasters. Finally, they examine the acceleration of roller coaster cars as they travel around the track. During the associated activity, the students design, build, and analyze a roller coaster for marbles out of foam tubing.

Subject:
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Scott Liddle
Date Added:
09/18/2014
Powerful Pulleys
Read the Fine Print
Educational Use
Rating
0.0 stars

Students continue to explore the story of building a pyramid, learning about the simple machine called a pulley. They learn how a pulley can be used to change the direction of applied forces and move/lift extremely heavy objects, and the powerful mechanical advantages of using a multiple-pulley system. Students perform a simple demonstration to see the mechanical advantage of using a pulley, and they identify modern day engineering applications of pulleys. In a hands-on activity, they see how a pulley can change the direction of a force, the difference between fixed and movable pulleys, and the mechanical advantage gained with multiple / combined pulleys. They also learn the many ways engineers use pulleys for everyday purposes.

Subject:
Design Studies
Practical & Applied Arts
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jacquelyn Sullivan
Justin Fritts
Lawrence E. Carlson
Malinda Schaefer Zarske
Date Added:
09/18/2014
The Power of Mechanical Advantage
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about the mechanical advantage offered by pulleys in an interactive and game-like manner. By virtue of the activity's mechatronic presentation, they learn to study a mechanical system not as a static image, but rather as a dynamic system that is under their control. Using a LEGO® MINDSTORMS® robotics platform and common hardware items, students build a mechanized elevator system. The ability to control different parameters (such as motor power, testing load and pulley arrangement) enables the teacher, as well as the students, to emphasize and reinforce particular aspects/effects of mechanical advantage.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carlo Yuvienco
Janet Yowell
Date Added:
09/18/2014
Projectile Motion
Read the Fine Print
Rating
0.0 stars

Blast a Buick out of a cannon! Learn about projectile motion by firing various objects. Set the angle, initial speed, and mass. Add air resistance. Make a game out of this simulation by trying to hit a target.

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Michael Dubson
Wendy Adams
Date Added:
04/07/2006
Ramp: Forces and Motion
Read the Fine Print
Rating
0.0 stars

Explore forces and motion as you push household objects up and down a ramp. Lower and raise the ramp to see how the angle of inclination affects the parallel forces. Graphs show forces, energy and work.

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Kathy Perkins
Noah Podolefsky
Sam Reid
Trish Loeblein
Date Added:
10/01/2010
Riding the Gravity Wave
Read the Fine Print
Educational Use
Rating
0.0 stars

Students write a biographical sketch of an artist or athlete who lives on the edge, riding the gravity wave, to better understand how these artists and athletes work with gravity and manage risk. Note: The literacy activities for the Mechanics unit are based on physical themes that have broad application to our experience in the world concepts of rhythm, balance, spin, gravity, levity, inertia, momentum, friction, stress and tension.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise Carlson
Jane Evenson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Rockets: Educators Guide
Read the Fine Print
Rating
0.0 stars

Few classroom topics generate as much excitement as rockets. The scientific, technological, engineering and mathematical foundations of rocketry provide exciting classroom opportunities for authentic hands-on, minds-on experimentation. The activities and lesson plans contained in this educator guide emphasize hands-on science, prediction, data collection and interpretation, teamwork, and problem solving. The guide also contains background information about the history of rockets and basic rocket science. The rocket activities in this guide support national curriculum standards for science, mathematics and technology.

The guide contains new and updated lessons and activities from the original Rockets Educator Guide published in 2003.

Subject:
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
NASA
Date Added:
12/06/2006
Runaway Train: Investigating Speed with Photo Gates
Read the Fine Print
Educational Use
Rating
0.0 stars

Students conduct an experiment to determine the relationship between the speed of a wooden toy car at the bottom of an incline and the height at which it is released. They observe how the photogate-based speedometer instrument "clocks" the average speed of an object (the train). They gather data and create graphs plotting the measured speed against start height. After the experiment, as an optional extension activity, students design brakes to moderate the speed of the cart at the bottom of the hill to within a specified speed range.

Subject:
Math
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Andrew Cave
Date Added:
09/18/2014
Science Channel - Learning Videos
Rating
0.0 stars

"Learn about outer space, leading scientific exploration, new technology, earth science basics, & more with science videos & news from Science Channel."

Including "How It's Made"
Free Science Channel Episodes
How the Universe Works
Outrageous Science
Earth Science
Myth Busters Jr

Subject:
Astronomy
Biology
Computer Science
Earth Science
Food Studies
Physical Science
Physics
Practical & Applied Arts
Science
Social Studies
Material Type:
Activity/Lab
Author:
Science Channel
Date Added:
06/17/2024
Science at Home - Grade 7
Rating
0.0 stars

Every week Science North will provide Grade 7 teachers with a pre-recorded video and printable resource.

Teachers will be able to share these YouTube videos and resources with students weekly.

Included are classroom videos, student handouts, and offline lesson plans.

These videos and handouts can be sent to students to provide them with key concepts and activities that link to the curriculum.

Subject:
Computer & Digital Technologies
Computer Science
Earth Science
Math
Science
Material Type:
Activity/Lab
Homework/Assignment
Lesson
Reading
Author:
Science North
Date Added:
06/02/2021
The Science of Swinging
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn what a pendulum is and how it works in the context of amusement park rides. While exploring the physics of pendulums, they are also introduced to Newton's first law of motion about continuous motion and inertia.

Subject:
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ashleigh Bailey
Denise W. Carlson
Malinda S. Zarske
Megan Podlogar
Date Added:
09/18/2014
Slide Right on By Using an Inclined Plane
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore building a pyramid, learning about the simple machine called an inclined plane. They also learn about another simple machine, the screw, and how it is used as a lifting or fastening device. During a hands-on activity, students see how the angle of inclination and pull force can make it easier (or harder) to pull an object up an inclined plane.

Subject:
Design Studies
Practical & Applied Arts
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denise W. Carlson
Jacquelyn F. Sullivan
Lawrence E. Carlson
Malinda Schaefer Zarske
Travis Reilly
Date Added:
09/18/2014
Space Travel
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students are introduced to the historical motivation for space exploration. They learn about the International Space Station as an example of recent space travel innovation and are introduced to new and futuristic ideas that space engineers are currently working on to propel space research far into the future!

Subject:
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Brian Kay
Geoffrey Hill
Jane Evenson
Janet Yowell
Jessica Butterfield
Jessica Todd
Karen King
Sam Semakula
Date Added:
09/18/2014
Spaced Out
Read the Fine Print
Educational Use
Rating
0.0 stars

This lesson introduces students to the space environment. It covers the major differences between the environment on Earth and that of outer space and the engineering challenges that arise because of these discrepancies. In order to prepare students for the upcoming lessons on the human body, this lesson challenges them to think about how their bodies would change and adapt in the unique environment of space.

Subject:
Physical Science
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Denali Lander
Janet Yowell
Malinda Schaefer Zarske
Teresa Ellis
Date Added:
09/18/2014
The Stress That You Apply
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about contact stress and its applications in engineering. They are introduced to the concept of heavy loads, such as buildings, elephants, people and traffic, and learn how those heavy loads apply contact stress. Through the analysis of their own footprints, students determine their contact stress.

Subject:
Environmental Science
Math
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eduardo Suescun
Janet Yowell
Date Added:
09/18/2014
Swing in Time
Read the Fine Print
Educational Use
Rating
0.0 stars

Students examine the motion of pendulums and come to understand that the longer the string of the pendulum, the fewer the number of swings in a given time interval. They see that changing the weight on the pendulum does not have an effect on the period. They also observe that changing the angle of release of the pendulum has negligible effect upon the period.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
10/14/2015
Swinging Pendulum
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity demonstrates how potential energy (PE) can be converted to kinetic energy (KE) and back again. Given a pendulum height, students calculate and predict how fast the pendulum will swing by understanding conservation of energy and using the equations for PE and KE. The equations are justified as students experimentally measure the speed of the pendulum and compare theory with reality.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Denise Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Swinging Pendulum (for High School)
Read the Fine Print
Educational Use
Rating
0.0 stars

This activity shows students the engineering importance of understanding the laws of mechanical energy. More specifically, it demonstrates how potential energy can be converted to kinetic energy and back again. Given a pendulum height, students calculate and predict how fast the pendulum will swing by using the equations for potential and kinetic energy. The equations will be justified as students experimentally measure the speed of the pendulum and compare theory with reality.

Subject:
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Chris Yakacki
Denise Carlson
Janet Yowell
Malinda Schaefer Zarske
Date Added:
10/14/2015
Swinging on a String
Read the Fine Print
Educational Use
Rating
0.0 stars

Students explore how pendulums work and why they are useful in everyday applications. In a hands-on activity, they experiment with string length, pendulum weight and angle of release. In an associated literacy activity, students explore the mechanical concept of rhythm, based on the principle of oscillation, in a broader biological and cultural context in dance and sports, poetry and other literary forms, and communication in general.

Subject:
Math
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Ben Heavner
Denise Carlson
Malinda Schaefer Zarske
Sabre Duren
Date Added:
09/18/2014