Updating search results...

Search Resources

14 Results

View
Selected filters:
  • vector
Bombs Away!
Read the Fine Print
Educational Use
Rating
0.0 stars

Students design and build devices to protect and accurately deliver dropped eggs. The devices and their contents represent care packages that must be safely delivered to people in a disaster area with no road access. Similar to engineering design teams, students design their devices using a number of requirements and constraints such as limited supplies and time. The activity emphasizes the change from potential energy to kinetic energy of the devices and their contents and the energy transfer that occurs on impact. Students enjoy this competitive challenge as they attain a deeper understanding of mechanical energy concepts.

Subject:
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Dan Choi
Randall Evans
Date Added:
09/18/2014
How Do You Store All This Data?
Read the Fine Print
Educational Use
Rating
0.0 stars

During this lesson, students start to see the data structure they will use to store their images, towards finding a solution to this unit's Grand Challenge. Students are introduced to two-dimensional arrays and vector classes. Then they are guided to see that a vector class is the most efficient way of storing the data for their images. Grand Challenge: To write a program to simulate peripheral vision by merging two images.

Subject:
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Anna Goncharova
Date Added:
09/18/2014
Kinematics fundamentals
Unrestricted Use
CC BY
Rating
0.0 stars

This course is a part of physics course structured and designed for class room teaching. The content development is targeted to the young minds having questions and doubts. The book conforms to the standards and frame work prescribed by various Boards of Education. This course contains a 669 page book available in html and pdf formats.

Subject:
Physics
Science
Material Type:
Reading
Syllabus
Textbook
Provider:
Rice University
Provider Set:
Connexions
Author:
Sunil Singh
Date Added:
09/13/2006
Linear Equations Game
Read the Fine Print
Educational Use
Rating
0.0 stars

Students groups act as aerospace engineering teams competing to create linear equations to guide space shuttles safely through obstacles generated by a modeling game in level-based rounds. Each round provides a different configuration of the obstacle, which consists of two "gates." The obstacles are presented as asteroids or comets, and the linear equations as inputs into autopilot on board the shuttle. The winning group is the one that first generates the successful equations for all levels. The game is created via the programming software MATLAB, available as a free 30-day trial. The activity helps students make the connection between graphs and the real world. In this activity, they can see the path of a space shuttle modeled by a linear equation, as if they were looking from above.

Subject:
Physical Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Stanislav Roslyakov
Date Added:
09/18/2014
Move It!
Read the Fine Print
Educational Use
Rating
0.0 stars

Mechanical energy is the most easily understood form of energy for students. When there is mechanical energy involved, something moves. Mechanical energy is a very important concept to understand. Engineers need to know what happens when something heavy falls from a long distance changing its potential energy into kinetic energy. Automotive engineers need to know what happens when cars crash into each other, and why they can do so much damage, even at low speeds! Our knowledge of mechanical energy is used to help design things like bridges, engines, cars, tools, parachutes, and even buildings! In this lesson, students will learn how the conservation of energy applies to impact situations such as a car crash or a falling object.

Subject:
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Dan Choi
Randall Evans
Date Added:
09/18/2014
Moving Man
Read the Fine Print
Rating
0.0 stars

Learn about position, velocity, and acceleration graphs. Move the little man back and forth with the mouse and plot his motion. Set the position, velocity, or acceleration and let the simulation move the man for you.

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Carl Wieman
Danielle Harlow
Kathy Perkins
Sam Reid
Wendy Adams
Date Added:
10/04/2005
PhET Simulations
Rating
0.0 stars

PhET Sims are now available in HTML5 as well!

Simulations can be sorted by subject area or grade. This is very helpful.

PhET is a collection of interactive computer simulations for teaching and learning physics, chemistry, math, and other sciences.

Simulations can be used directly on the site or downloaded and used that way.

The simulations are animated, interactive, and game-like environments where students learn through exploration. They emphasize the connections between real-life and the underlying science. These great activities help students visualize abstract concepts!

Subject:
Biology
Chemistry
Math
Physical Science
Physics
Science
Material Type:
Activity/Lab
GAP 4
GAP 5
GAP 6
Game
Simulation
Teaching/Learning Strategy
Author:
PhET Interactive Simulations
Date Added:
03/01/2019
Physics 30 - Unit 1
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

A compilation of lesson plans, worksheets and answer keys covering Unit 1 of Physics 30.

Subject:
Physics
Author:
Distance Learning Centre
Date Added:
06/13/2018
Simulating the Bug
Read the Fine Print
Educational Use
Rating
0.0 stars

Students modify a provided App Inventor code to design their own diseases. This serves as the evolution step in the software/systems design process. The activity is essentially a mini design cycle in which students are challenged to design a solution to the modification, implement and test it using different population patterns The result of this process is an evolution of the original app.

Subject:
Computer Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Douglas Bertelsen
Date Added:
09/18/2014
Thrown for a Loop
Read the Fine Print
Educational Use
Rating
0.0 stars

In this lesson, students begin to focus on the torque associated with a current carrying loop in a magnetic field. Students are prompted with example problems and use diagrams to visualize the vector product. In addition, students learn to calculate the energy of this loop in the magnetic field. Several example problems are included and completed as a class. A homework assignment is also attached as a means of student assessment.

Subject:
Electrical & Electronics
Practical & Applied Arts
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Eric Appelt
Date Added:
09/18/2014
What Is Newton's First Law?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to the concepts of force, inertia and Newton's first law of motion: objects at rest stay at rest and objects in motion stay in motion unless acted upon by an unbalanced force. Examples of contact and non-contact types of forces are provided, specifically applied, spring, drag, frictional forces, and magnetic, electric, gravitational forces. Students learn the difference between speed, velocity and acceleration, and come to see that the change in motion (or acceleration) of an object is caused by unbalanced forces. They also learn that engineers consider and take advantage of these forces and laws of motion in their designs. Through a PowerPoint® presentation and some simple teacher demonstrations these fundamental science concepts are explained and illustrated. This lesson is the first in a series of three lessons that are intended to be taught as a unit.

Subject:
Physics
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Elizabeth Anthony
Jacob Teter
Scott Strobel
Date Added:
09/18/2014
What Is Newton's Second Law?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to Newton's second law of motion: force = mass x acceleration. After a review of force, types of forces and Newton's first law, Newton's second law of motion is presented. Both the mathematical equation and physical examples are discussed, including Atwood's Machine to illustrate the principle. Students come to understand that an object's acceleration depends on its mass and the strength of the unbalanced force acting upon it. They also learn that Newton's second law is commonly used by engineers as they design machines, structures and products, everything from towers and bridges to bicycles, cribs and pinball machines. This lesson is the second in a series of three lessons that are intended to be taught as a unit.

Subject:
Physics
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Elizabeth Anthony
Jacob Teter
Scott Strobel
Date Added:
09/18/2014
What Is Newton's Third Law?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are introduced to Newton's third law of motion: For every action, there is an equal and opposite reaction. They practice identifying action-reaction force pairs for a variety of real-world examples, and draw and explain simplified free-body diagram vectors (arrows) of force, velocity and acceleration for them. They also learn that engineers apply Newton's third law and an understanding of reaction forces when designing a wide range of creations, from rockets and aircraft to door knobs, rifles and medicine delivery systems. This lesson is the third in a series of three lessons intended to be taught prior to a culminating associated activity to complete the unit.

Subject:
Physics
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Elizabeth Anthony
Jacob Teter
Scott Strobel
Date Added:
09/18/2014