Updating search results...

Search Resources

56 Results

View
Selected filters:
  • density
PhET Simulations
Rating
0.0 stars

PhET Sims are now available in HTML5 as well!

Simulations can be sorted by subject area or grade. This is very helpful.

PhET is a collection of interactive computer simulations for teaching and learning physics, chemistry, math, and other sciences.

Simulations can be used directly on the site or downloaded and used that way.

The simulations are animated, interactive, and game-like environments where students learn through exploration. They emphasize the connections between real-life and the underlying science. These great activities help students visualize abstract concepts!

Subject:
Biology
Chemistry
Math
Physical Science
Physics
Science
Material Type:
Activity/Lab
GAP 4
GAP 5
GAP 6
Game
Simulation
Teaching/Learning Strategy
Author:
PhET Interactive Simulations
Date Added:
03/01/2019
The Physics of Fluid Mechanics
Read the Fine Print
Educational Use
Rating
0.0 stars

From drinking fountains at playgrounds, water systems in homes, and working bathrooms at schools to hydraulic bridges and levee systems, fluid mechanics are an essential part of daily life. Fluid mechanics, the study of how forces are applied to fluids, is outlined in this unit as a sequence of two lessons and three corresponding activities. The first lesson provides a basic introduction to Pascal's law, Archimedes' principle and Bernoulli's principle and presents fundamental definitions, equations and problems to solve with students, as well as engineering applications. The second lesson provides a basic introduction to above-ground storage tanks, their pervasive use in the Houston Ship Channel, and different types of storage tank failure in major storms and hurricanes. The unit concludes with students applying what they have learned to determine the stability of individual above-ground storage tanks given specific storm conditions so they can analyze their stability in changing storm conditions, followed by a project to design their own storage tanks to address the issues of uplift, displacement and buckling in storm conditions.

Subject:
Science
Material Type:
Unit of Study
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Plate Tectonics
Read the Fine Print
Rating
0.0 stars

Explore how plates move on the surface of the earth. Change temperature, composition, and thickness of plates. Discover how to create new mountains, volcanoes, or oceans!

Subject:
Physical Science
Science
Material Type:
Simulation
Provider:
University of Colorado Boulder
Provider Set:
PhET Interactive Simulations
Author:
Emily Moore
Heather Houlton
Jonathan Olson
Kat Quigley
Kathy Perkins
Kevin Beals
Lauren Brodsky
Noah Podolefsky
Phaela Peck
Suzy Loper
Date Added:
08/20/2012
Population Density: How Much Space Do You Have?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students learn about population density within environments and ecosystems. They determine the density of a population and think about why population density and distribution information is useful to engineers for city planning and design as well as for resource allocation.

Subject:
Design Studies
Practical & Applied Arts
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Christopher Valenti
Denise Carlson
Malinda Schaefer Zarske
Date Added:
10/14/2015
Rock and Boat
Read the Fine Print
Educational Use
Rating
0.0 stars

Students are presented with a challenge question that they must answer with scientific and mathematical reasoning. The challenge question is: "You have a large rock on a boat that is floating in a pond. You throw the rock overboard and it sinks to the bottom of the pond. Does the water level in the pond rise, drop or remain the same?" Students observe Archimedes' principle in action in this model recreation of the challenge question when a toy boat is placed in a container of water and a rock is placed on the floating boat. Students use terminology learned in the classroom as well as critical thinking skills to derive equations needed to answer this question.

Subject:
Math
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Emily Sappington
Mila Taylor
Date Added:
09/18/2014
Saltwater Circuit
Read the Fine Print
Educational Use
Rating
0.0 stars

Students build a saltwater circuit, which is an electrical circuit that uses saltwater as part of the circuit. Students investigate the conductivity of saltwater, and develop an understanding of how the amount of salt in a solution impacts how much electrical current flows through the circuit. They learn about one real-world application of a saltwater circuit — as a desalination plant tool to test for the removal of salt from ocean water.

Subject:
Chemistry
Environmental Science
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Carleigh Samson
Denise W. Carlson
Juan Ramirez Jr.
Stephanie Rivale
Date Added:
09/18/2014
Science at Home - Grade 8
Rating
0.0 stars

Every week Science North will provide Grade 8 teachers with a pre-recorded video and printable resource.

Teachers will be able to share these YouTube videos and resources with students weekly.

Included are classroom videos, student handouts, and offline lesson plans.

These videos and handouts can be sent to students to provide them with key concepts and activities that link to the curriculum.

Subject:
Computer & Digital Technologies
Computer Science
Earth Science
Math
Science
Material Type:
Activity/Lab
Homework/Assignment
Lesson
Reading
Author:
Science North
Date Added:
06/02/2021
The Search for Surfactants: What Is the Best Soap?
Read the Fine Print
Educational Use
Rating
0.0 stars

Student teams are challenged to evaluate the design of several liquid soaps to answer the question, “Which soap is the best?” Through two simple teacher class demonstrations and the activity investigation, students learn about surface tension and how it is measured, the properties of surfactants (soaps), and how surfactants change the surface properties of liquids. As they evaluate the engineering design of real-world products (different liquid dish washing soap brands), students see the range of design constraints such as cost, reliability, effectiveness and environmental impact. By investigating the critical micelle concentration of various soaps, students determine which requires less volume to be an effective cleaning agent, factors related to both the cost and environmental impact of the surfactant. By investigating the minimum surface tension of the soap, students determine which dissolves dirt and oil most effectively and thus cleans with the least effort. Students evaluate these competing criteria and make their own determination as to which of five liquid soaps make the “best” soap, giving their own evidence and scientific reasoning. They make the connection between gathered data and the real-world experience in using these liquid soaps.

Subject:
Math
Physical Science
Physics
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Author:
Lauchlin Blue
Shawn Richard
Date Added:
05/07/2018
So What Is the Density?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students review what they know about the 20 major bones in the human body (names, shapes, functions, locations, as learned in the associated lesson) and the concept of density (mass per unit of volume). Then student pairs calculate the densities for different bones from a disarticulated human skeleton model of fabricated bones, making measurements via triple-beam balance (for mass) and water displacement (for volume). All groups share their results with the class in order to collectively determine the densities for every major bone in the body. This activity prepares students for the next activity, "Can It Support You? No Bones about It," during which they act as biomedical engineers and design artificial bones, which requires them to find materials of suitable density to perform as human body implants.

Subject:
Health Science
Science
Material Type:
Activity/Lab
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Jeanne Hubelbank
Kristen Billiar
Michelle Gallagher
Terri Camesano
Date Added:
10/14/2015
Thermo and Fluid Dynamics of a Homemade Lava Lamp
Read the Fine Print
Rating
0.0 stars

In this experiment, students create a "lava lamp" - a beaker on a hotplate, and investigate buoyancy, convection and other fluid and thermodynamic properties using ink, water, vegetable oil and Alka-Seltzer tablets. The activity is from PUMAS - Practical Uses of Math and Science - a collection of brief examples created by scientists and engineers showing how math and science topics taught in K-12 classes have real world applications.

Subject:
Physics
Science
Material Type:
Activity/Lab
Simulation
Provider:
NASA
Provider Set:
NASA Wavelength
Date Added:
10/05/2018
Visit to An Ocean Planet: Salinity and Deep Ocean Currents
Read the Fine Print
Rating
0.0 stars

This resource uses text, images, maps and a laboratory exercise to explain how differences in the temperature and salinity of ocean water cause the formation of deep-ocean currents. It is part of the Jet Propulsion Laboratory's "Ocean Surface Topography from Space" website. This material is also available on the "Visit to An Ocean Planet" CD-ROM.

Subject:
Chemistry
Science
Material Type:
Activity/Lab
Provider:
NASA
Author:
James Kolb
Date Added:
10/05/2018
What Floats Your Boat?
Read the Fine Print
Educational Use
Rating
0.0 stars

Students use modeling clay, a material that is denser than water and thus ordinarily sinks in water, to discover the principle of buoyancy. They begin by designing and building boats out of clay that will float in water, and then refine their designs so that their boats will carry as great a load (metal washers) as possible. Building a clay boat to hold as much weight as possible is an engineering design problem. Next, they compare amount of water displaced by a lump of clay that sinks to the amount of water displaced by the same lump of clay when it is shaped so as to float. Determining the masses of the displaced water allows them to arrive at Archimedes' principle, whereby the mass of the displaced water equals the mass of the floating clay boat.

Subject:
Physics
Science
Material Type:
Activity/Lab
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Mary R. Hebrank
Date Added:
09/18/2014
What Is Matter?
Conditional Remix & Share Permitted
CC BY-NC
Rating
0.0 stars

Students will investigate different phases of and properties of matter, including mass, volume, density, solubility, and conservation.

Subject:
Science
Material Type:
Activity/Lab
Lesson
Provider:
South Metro-Salem STEM Partnership
Author:
D. Chris Kresin
Date Added:
05/24/2018
What's Up with All This Traffic?
Read the Fine Print
Educational Use
Rating
0.0 stars

Expanding on the topic of objects in motion covering Newton's laws of motion, acceleration and velocity, which are taught starting in third grade, students are introduced to new concepts of speed, density, level of service (LOS) (quality of roadways), delay and congestion. Every day we are affected by congestion even if we do not step out of our homes. For example, the price we pay for goods increases due to increases in shipping costs caused by congestion delays. A congestion metric would help us to compare roadways and assess improvement methods. A common metric used to measure congestion is called level of service (LOS).

Subject:
Science
Material Type:
Lesson
Provider:
TeachEngineering
Provider Set:
TeachEngineering
Author:
Dayna Lee Martinez
Tapas K. Das
Date Added:
09/18/2014