This collection features resources about computational thinking. It also has numerous resources to help develop computational thinking skills in your students.
TWENTY amazing lessons to teach computer science to Grades 3 to 5. …
TWENTY amazing lessons to teach computer science to Grades 3 to 5. The curriculum is organized into 5 units: Scratch Review, Creative Commons, Makey Makey, Conditionals and Final Project. If you need something easier be sure to use the Green level (Level 1) by using the tabs at the top of the website or finding it in the resource bank. If you need something harder head to Purple (Level 3) using the same method.
This fabulous resource has everything you need to get started coding and computer science with your students TODAY!
TWENTY amazing lessons to teach computer science to Grades 3 to 5. …
TWENTY amazing lessons to teach computer science to Grades 3 to 5. The curriculum is organized into 5 units: Scratch review, variables, Makey Makey, advanced games and final project. If you need something easier be sure to use the Green level (Level 1) or Blue level (Level 2) by using the tabs at the top of the website or finding it in the resource bank.
This fabulous resource has everything you need to get started coding and computer science with your students TODAY!
ASP is a powerful tool for making dynamic and interactive Web pages. …
ASP is a powerful tool for making dynamic and interactive Web pages. In our ASP tutorial you will learn about ASP, and how to execute scripts on your server.
Working with either Edison or Microbit systems, students will gain an understanding …
Working with either Edison or Microbit systems, students will gain an understanding of the importance of automation in agriculture while working together to complete a series of fun coding activities. Note: This resource is designed to compliment the Edison and Microbit courses offered through SaskCode. Edison and Microbit systems are not supplied by AITC-SK. You will need to have an AITC SK account and log in to access this resource.
Instructors can now freely access "App Development with Swift" through the Canvas …
Instructors can now freely access "App Development with Swift" through the Canvas Commons. The course includes lessons, teacher guides and developer tools for use in the classroom. You will need to work with apple products or iOS for this resource.
AppML stands for Application Modeling Language. AppML runs in any HTML page. …
AppML stands for Application Modeling Language. AppML runs in any HTML page. No installation is required. AppML is a tool for bringing data to HTML applications:
The inspiration for this site came from John Allen Paulos' book Innumeracy. …
The inspiration for this site came from John Allen Paulos' book Innumeracy. From it Fawn Nguyen took the mathematical fun facts, etc. and created middle school mathematics critical thinking problems that relate to ratios and proportional reasoning and require students to compare stuff and really get them thinking.
Here's an example: Tortoises have the longest lifespan among vertebrates, about 200 years.
A fruit fly's lifespan is about 45 days. If we scaled both lifespans down so that a tortoise's 200 years is now 1 day, then what is the fruit fly's lifespan, in seconds?
A FREE Hand-drawn Animated Gif creator. Copy and paste this url into …
A FREE Hand-drawn Animated Gif creator.
Copy and paste this url into your browser to see a short and basic tutorial about how to use this tool https://www.youtube.com/watch?v=CfE1cu8Cw1o
No account needed!
"To make an animated GIF it is as simple as drawing on a blank scene editor. After drawing multiple scenes to create the gif, the user presses play to preview the animation with the ability to easily make edits." (AASL)
Use this to have students demonstrate their learning or use it to creatively present new ideas or teach lessons. There are plenty of ideas and examples under the "Teachers" tab at the top of the site.
In this lesson, students go further into the collection and interpretation of …
In this lesson, students go further into the collection and interpretation of data, including cleaning and visualizing data. Students first look at the how presenting data in different ways can help people to understand it better, and they then create visualizations of their own data. Using a the results of a preferred pizza topping survey, students must decide what to do with data that does not easily fit into the visualization scheme that they have chosen. Finally, students look at which parts of this process can be automated by a computer and which need a human to make decisions.
In this lesson students get practice making decisions with data based on …
In this lesson students get practice making decisions with data based on some problems designed to be familiar to middle school students. Students work in groups discussing how they would use the data presented to make a decision before the class discusses their final choices. Not all questions have right answers and in some cases students can and should decide that they should collect more data. The lesson concludes with a discussion of how different people could draw different conclusions from the same data, or how collecting different data might have affected the decisions they made.
Students begin the lesson by looking at a cake preference survey that …
Students begin the lesson by looking at a cake preference survey that allows respondents to specify both a cake and an icing flavor. They discuss how knowing the relationship between cake and icing preference helps them better decide which combination to recommend. They are then introduced to cross tabulation, which allows them to graph relationships to different preferences. They use this technique to find relationships in a preference survey, then brainstorm the different types of problems that this process could help solve.
In this lesson students look at a simple example of how a …
In this lesson students look at a simple example of how a computer could be used to complete the decision making step of the data problem solving process. Students are given the task of creating an algorithm that could suggest a vacation spot. Students then create rules, or an algorithm, that a computer could use to make this decision automatically. Students share their rules and what choices their rules would make with the class data. They then use their rules on data from their classmates to test whether their rules would make the same decision that a person would. The lesson concludes with a discussion about the benefits and drawbacks of using computers to automate the data problem solving process.
To conclude this unit, students design a recommendation engine based on data …
To conclude this unit, students design a recommendation engine based on data that they collect and analyze from their classmates. After looking at an example of a recommendation app, students follow a project guide to complete this multi-day activity. In the first several steps, students choose what choice they want to help the user to make, what data they need to give the recommendation, create a survey, and collect information about their classmates' choices. They then interpret the data and use what they have learned to create the recommendation algorithm. Last, they use their algorithms to make recommendations to a few classmates. Students perform a peer review and make any necessary updates to their projects before preparing a presentation to the class.
In this lesson, students look at how data is collected and used …
In this lesson, students look at how data is collected and used by organizations to solve problems in the real world. The lesson begins with a quick review of the data problem solving process they explored in the last lesson. Then students are presented three scenarios that could be solved using data and brainstorm the types of data they would want to solve them and how they could collect the data. Each problem is designed to reflect a real-world service that exists. After brainstorming, students watch a video about a real-world service and record notes about what data is collected by the real-world service and how it is used. At the end of the lesson, students record whether data was provided actively by a user, was recorded passively, or is collected by sensors.
In the first lesson of the data unit, students get an overview …
In the first lesson of the data unit, students get an overview of what data is and how it is used to solve problems. Students start off with a brief discussion to come to a common understanding of data. They then split into groups and use a data set to make a series of meal recommendations for people with various criteria. Each group has the choices of meal represented in a different way (pictures, recipes, menu, nutrition) that gives an advantage for one of the recommendations. Afterwards, groups compare their responses and discuss how the different representations of the meal data affected how the students were able to solve the different problems.
In this lesson students create their own system for representing information. They …
In this lesson students create their own system for representing information. They begin by brainstorming all the different systems they already use to represent yes-no responses. They then work in small groups to create a system that can represent any letter in the alphabet using only a single stack of cards. The cards used have one of 6 different possible drawings (6 animals, 6 colors, etc.) and so to represent the entire alphabet students will need to use patterns of multiple cards to represent each letter. Students create messages with their systems and exchange with other groups to ensure the system worked as intended. In the wrap-up discussion the class reviews any pros and cons of the different systems. They discuss commonalities between working systems and recognize that there are many possible solutions to this problem and what's important is that everyone use the same arbitrary system to communicate.
In this lesson students learn to use their first binary system for …
In this lesson students learn to use their first binary system for encoding information, the ASCII system for representing letters and other characters. At the beginning of the lesson the teacher introduces the fact that computers must represent information using either "on" or "off". Then students are introduced to the ASCII system for representing text using binary symbols. Students practice using this system before encoding their own message using ASCII. At the end of the lesson a debrief conversation helps synthesize the key learning objectives of the activity.
In this lesson students learn how computers represent images. To begin the …
In this lesson students learn how computers represent images. To begin the lesson they consider the challenge of turning all the complexity of vision into a binary pattern. Through a series of images showing how this transformation is made students are introduced to the concept of splitting images into squares or "pixels" which can then be turned on or off individually to make the entire image. Students then do a short set of challenges using the Pixelation Widget in order to draw black and white images. Puzzles are designed to call out some of the challenges of representing images in this way. In the wrap up students make connections between the system for representing images and the system for representing text they learned in the previous lesson.
In this lesson, students learn about the binary number system. With a …
In this lesson, students learn about the binary number system. With a set of cards that represent the place values in a binary (base-2) number system by a collection of dots, students turn bits "on" or "off" by turning cards face up and face down, then observe the numbers that result from these different patterns. Eventually, students extend the pattern to a generic 4-bit system.
No restrictions on your remixing, redistributing, or making derivative works. Give credit to the author, as required.
Your remixing, redistributing, or making derivatives works comes with some restrictions, including how it is shared.
Your redistributing comes with some restrictions. Do not remix or make derivative works.
Most restrictive license type. Prohibits most uses, sharing, and any changes.
Copyrighted materials, available under Fair Use and the TEACH Act for US-based educators, or other custom arrangements. Go to the resource provider to see their individual restrictions.